

Efficient Primal Heuristics for Mixed-Integer Linear Programs

Linxin Yang, Sha Lai, Akang Wang, Xiaodong Luo Shenzhen Research Institute of Big Data, China

Xiang Zhou, Haohan Huang, Shengcheng Shao, Yuanming Zhu, Dong Zhang

Algorithm & Technology Development, Service & Software R&D Management,

GTS, Huawei

NeurIPS 2021 Annual Conference December 9, 2021

Efficient Primal Heuristics for Mixed-Integer Linear Programs

ML4CO

Mixed-Integer Linear Program

$$\begin{array}{ll} \min_{x,y} & c^{\top}x + d^{\top}y \\ \text{s.t.} & Ax + By \leq h \\ & x \in \mathbb{R}^n, y \in \mathbb{Z}^m \end{array}$$

Parameters (c, d, A, B, h) follow some distribution.

Question

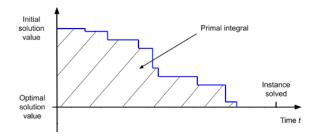
Can we utilize machine learning (ML) to enhance/speed up the optimization step?

 \checkmark In this work, we do not utilize ML to design primal heuristics but rely on it for tuning parameters of our proposed heuristics.

😡 深圳市大数据研究院 处 HUAWEI

Three tasks:

- primal task: primal heuristics at the root node
- dual task: variable selection for branching
- configuration task: parameter tuning before solving



E

《周》

Final Results: Primal Task

😔 深圳市大数据研究院 👐 HUAWEI

Three datasets:

- item placement
- load balancing
- anonymous

Defense Line als

Primal tas	team	item_placement		load_balancing		anonymous		
rank		cum. reward	rank	cum. reward	rank	cum. reward	rank	score
1	CUHKSZ_ATD	-3355.56	1	-213467.31	1	-45747908.15	1	1
2	UNIST-LIM-Lab	-5902.27	5	-214696.55	2	-48690877.94	2	20
3	MDO	-4798.50	3	-216053.14	3	-52610680.40	3	27
4	EI-OROAS	-4099.32	2	-217743.57	4	-101312897.27	4	32
5	Mr_Tree	-5988.72	7	-218451.95	5	-112201967.54	5	175

E

《周》

■ $i \in I := \{0, 1, ..., 104\}$, the set of items ■ $j \in J := \{0, 1, ..., 9\}$, the set of containers ■ $k \in K := \{0, 1, 2\}$, the set of dimensions Consider a multi-dimensional multi-knapsack model:

$$\begin{split} \min_{x,y,z} & \sum_{j\in J}\sum_{k\in K}\alpha_k y_{jk} + \sum_{k\in K}\beta_k z_k \\ \text{s.t.} & \sum_{j\in J}x_{ij} = 1 & \forall i\in I \\ & \sum_{i\in I}a_{ik}x_{ij} \leq b_k & \forall j\in J, \forall k\in K \\ & \sum_{i\in I}a_{ik}x_{ij} + y_{jk} \geq 1 & \forall j\in J, \forall k\in K \\ & \sum_{i\in I}d_{ik}x_{ij} + y_{jk} \geq 1 & \forall j\in J, \forall k\in K \\ & y_{jk} \leq z_k & \forall j\in J, \forall k\in K \\ & x_{ij} \in \{0,1\} & \forall i\in I, \forall j\in J \\ & y_{jk} \geq 0 & \forall j\in J, \forall k\in K \end{split}$$

Across all instances, we collect the following statistics.

parameters	$i \in \{0, 1,, 99\}$			<i>i</i> ∈ {100, 101,, 104}		
F	range	mean	std	range	mean	std
a _{ik}	(0, 0.1]	0.05	0.0008	[0.9, 1.0]	0.95	8000.0
d _{ik}	(0, 0.11]	0.051	0.0008	[0.83, 1.15]	0.97	0.0015
a_{ik}/d_{ik}	[0.86, 1.10]	0.97	0.0008	[0.86, 1.10]	0.97	0.0008

b_k \in [1.72, 2.20], mean = 1.95, std = 0.003.

$$\alpha_k = 1, \beta_k = 300$$

Observation

Since a_{ik} , d_{ik} values of items 100 - 104 are significantly larger than those of other items, we can apply symmetry-breaking constraints

 $x_{100,0} = x_{101,1} = x_{102,2} = x_{103,3} = x_{104,4} = 1.$

Meta-heuristics:

- Greedy heuristics for knapsack problems
- Large neighborhood search (LNS)
- Math-heuristics:
 - Two-step approach: (i) assign items to the first five containers by solving an assignment model defined as follows:
 - (a) combine small items to generate candidates that might be placed in the first five containers;
 - (b) assume all items that are placed at the remaining containers have "continuous" sizes (rather than "discrete");
 - (c) add an SOS1 constraint for each small item.
 - (ii) assign the remaining items to the last five containers by solving a sub-MIP.
 - Fix-and-optimize: properly choose two out of the last five containers, and then solve a sub-MIP to reassign items within those two containers optimally.

i ∈ *I* := {0, 1, ..., 59}, the set of tasks
j ∈ *J* := {0, 1, ..., 999}, the set of machines
Jⁱ ⊆ *J*, a subset of machines that are accessible by task *i*

Load Balancing

深圳市大数据研究院
ション
Shunzhan Research Institute of Big Data

Consider a load balancing formulation:

$$\begin{array}{ll} \min_{\mathsf{x}, \mathsf{y}} & \sum_{j \in J} \mathsf{y}_j \\ \text{s.t.} & x_{ij} \leq \mathsf{a}_i \mathsf{y}_j & \forall i \in I, \forall j \in J^i \\ & \sum_{i \in I: j \in J^i} \mathsf{x}_{ij} \leq \mathsf{b}_j & \forall j \in J \\ & \sum_{j \in J^i \setminus \{j'\}} \mathsf{x}_{ij} \geq \mathsf{a}_i & \forall i \in I, \forall j' \in J^i \\ & \mathsf{y}_j \in \{0, 1\} & \forall j \in J \\ & \mathsf{0} \leq \mathsf{x}_{ij} \leq \mathsf{b}_j & \forall i \in I, \forall j \in J^i \end{array}$$

Observation

Rounding up a fractional solution would always produce a feasible solution.

Efficient Primal Heuristics for Mixed-Integer Linear Programs

(#)

Based on the statistics across all instances, we notice $b_j < a_i$. As a result, model (#) is equivalent to the following:

$$\begin{array}{ll} \min_{x,y} & \sum_{j \in J} y_j \\ \text{s.t.} & 0 \leq x_{ij} & \forall i \in I, \forall j \in J^i \\ & \sum_{i \in I: j \in J^i} x_{ij} \leq b_j y_j & \forall j \in J \\ & \sum_{j \in J^i \setminus \{j'\}} x_{ij} \geq a_i & \forall i \in I, \forall j' \in J^i \\ & y_j \in \{0,1\} & \forall j \in J \end{array}$$
(*)

Note that (\star) is much smaller and has a tighter LP relaxation than (#).

😡 深圳市大数据研究院 火 HUAWEI

(티) (종) (종) (종)

- Rounding heuristics: to balance feasibility and optimality, we combine binary search with quantile selection to choose good rounding thresholds for y.
 - the root LP solution
 - the optimal LP solution to (\star)

RENS [Ber14]: we define and solve a sub-MIP based on (*) and its LP solution

Key Challenges:

- model formulations are not exactly the same (at least from our observation)
- model size changes

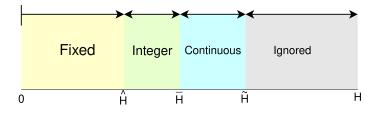
Observation

One can define a planning horizon (denoted by H) and associate with each discrete variable a time period (denote by h).

- Feasibility pump [FGL05, BFL07]: apply rounding + projection + weak/strong perturbation to generate the first incumbent
- RENS: define a sub-MIP by fixing those discrete variables with their h values less than 0.9H at the incumbent and then solve it with a time limit.
- Rolling-horizon:
 - (i) ignore constraints involving discrete variables with their h values greater than $\tilde{H};$
 - (ii) relax the integrality constraints on variables with their *h* values greater than \bar{H} ;
 - (iii) fix those discrete variables with their *h* values less than \hat{H} (note $\hat{H} < \bar{H} < \tilde{H}$) at the optimal solution from a previous run;
 - (iv) solve the sub-MIP;
 - (v) increase \hat{H}, \bar{H} and \tilde{H} adaptively and then iterate procedure (i) (iv).

Anonymous: Rolling-horizon

< A >



5. ► 5

(ロドス劇とス語)の語と

	Modeling	Construction	Improvement
item	sym. break.	$\begin{array}{l} {\sf greedy} \\ {\sf assign.} \ + \ {\sf sub-MIP} \end{array}$	adaptive LNS fix-and-optimize
load	reformulation	data-driven rounding	RENS
anon.		feasibility pump	sequence-informed RENS rolling-horizon w. var. windows

- [Ber14] Timo Berthold, *Rens*, Mathematical Programming Computation **6** (2014), no. 1, 33–54.
- [BFL07] Livio Bertacco, Matteo Fischetti, and Andrea Lodi, A feasibility pump heuristic for general mixed-integer problems, Discrete Optimization 4 (2007), no. 1, 63–76.
- [FGL05] Matteo Fischetti, Fred Glover, and Andrea Lodi, *The feasibility pump*, Mathematical Programming **104** (2005), no. 1, 91–104.