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MILP

Consider a mixed-integer linear program:

min
x

c⊤x

s.t. x ∈ S ,
(1)

where S ≡ {x ∈ P : xi ∈ Z ∀i ∈ I} ,P ≡
{
x ∈ Rn

+ : Ax ≤ b
}
, I ⊆ [n].

Let conv(S) denote the convex hull of S .
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MILP

S ⊆ conv(S) ⊆ P
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MILP

Observation

conv(S) is a polyhedron, i.e., conv(S) can be represented via finitely many
linear inequalities. (Prove it!)

Problem (1) is equivalent to the following linear program

min
x

c⊤x

s.t. x ∈ conv(S)

We aim to characterize conv(S) (e.g., represent conv(S) via linear
inequalities).
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Characterizing conv(S)

Since conv(S) is a polyhedron, we can characterize conv(S) from:

an algebraic perspective: H-polyhedron/H-representation

conv(S) =
{
x ∈ Rn : Ãx ≤ b̃

}
a geometric perspective: V-polyhedron/V-representation

conv(S) =
∑
j

αjv
j

extreme points

+
∑
ℓ

βℓr
ℓ

extreme rays

, Minkowski-Weyl Theorem

where
∑

j αj = 1 and αj , βℓ ≥ 0.

For generality purposes, we will proceed with an algebraic perspective and
aim for a minimal representation of conv(S).
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Minimal representation

The minimal representation of conv(S) entails facet-defining inequalities.
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Facet-defining inequalities

α⊤x ≤ β is a valid inequality for set X if α⊤x̄ ≤ β ∀x̄ ∈ X .

Definition (Face)

A face of a polyhedron X ⊆ Rn is a set of the form:

F ≡ X ∩
{
x ∈ Rn : α⊤x = β

}
,

where α⊤x ≤ β is a valid inequality for X .

Definition (Facet)

Face F of set X is a facet iff dim(F ) = dim(X )− 1.

Any valid inequality for set X that defines a facet is called a facet-defining
inequality.
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MILP

Question

Since problem (4) is an LP and can be solved in polynomial time, does it
mean that problem (1) can be solved in polynomial time? In another word,
does an general MILP have a complexity of P?

Answer

Of course not, characterizing conv(S) is NP-hard.
The size of conv(S) is huge, i.e., the number of facets for conv(S) is
of an exponential size.

Identifying a violated facet-defining inequality of conv(S) is as hard
as solving the original problem (1).

We try to outer-approximate conv(S), rather than search for a minimal
representation of conv(S).
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Cutting-plane algorithm

Consider an LP relaxation of problem (1):

min
x

c⊤x

s.t. x ∈ P.
(2)

The cutting-plane algorithm works as follows:

i. Obtain the optimal solution x̄ to problem (2). If x̄ ∈ S , then stop.
Otherwise, go to step ii.

ii. Identify an inequality α⊤x ≤ β valid for S (or equivalently conv(S))
such that α⊤x̄ > β. Take P ← P ∩

{
x ∈ Rn : α⊤x ≤ β

}
, go to step i.
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Cutting-plane algorithm

Guarantee to identify a violated cut?

– Yes.

The complexity of separation problem?

– manageable

Will this algorithm terminate?

– Yes, but with a slow convergence rate.

Numerical error

– Branch-and-Cut, readers are referred to for an amazing story [C+07].

Akang Wang wangakang@sribd.cn Cutting-Planes in Mixed-Integer Linear Programs: An Overview 10



Shenzhen Research Institute of Big Data

Branch-and-Cut

[AW13] identifies 4 core components based on: presolve, primal
heuristics, cutting-planes, and branching

[ABG+20] concludes that presolve together with cutting-plane
techniques are by far the most important individual tools contributing
to the power of modern MIP solvers.
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Cutting-planes

We attempt to answer the following questions:

How to generate cuts?

Cutting-planes in the literature/MIP solvers

Strength of cutting-planes

How to strengthen/lift cuts if possible?

Which cuts are selected? [Ach09]

References: [Cor08], IP course notes by Ted Ralphs
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Generating cutting-planes

algebraic perspective: e.g., Chvatal procedure

i. Take combinations of the known valid inequalities.
ii. Use rounding to produce stronger ones

geometric perspective: e.g., split inequalities

i. Use a disjunction to generate several disjoint polyhedra whose union
contains S

ii. Generate inequalities valid for the convex hull of this union
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Algebraic: Chvatal inequality

Given S ≡ {x ∈ Z|I | × R|C | : Ax ≤ b} and any u ∈ Rm
+, we have

u⊤Ax ≤ u⊤b

u⊤AI xI + u⊤ACxC ≤ u⊤b

If u⊤AC = 0, u⊤AI ∈ Z|I | and u⊤b /∈ Z, then

u⊤AI xI ≤ u⊤b∑
i∈I

u⊤Aixi ≤ ⌊u⊤b⌋

The resulting inequality is called a “Chvatal inequality”.
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Algebraic: Chvatal procedure

Given S ≡ {x ∈ Z|I |
+ × R|C |

+ : Ax ≤ b} and any u ∈ Rm
+, we have

u⊤Ax ≤ u⊤b

u⊤AI xI + u⊤ACxC ≤ u⊤b

If u⊤AC ≥ 0 and u⊤b /∈ Z, then

u⊤AI xI ≤ u⊤b∑
i∈I
⌊u⊤Ai⌋xi ≤ u⊤b∑

i∈I
⌊u⊤Ai⌋xi ≤ ⌊u⊤b⌋

The resulting inequality is called a “Chvatal-Gomory inequality”.

Clearly, the “Chvatal inequality” is a special case of “Chvatal-Gomory
inequalities”.
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Geometric: split inequalities

Definition (Split inequalities)

Given P and S , an inequality α⊤x ≤ β is a split inequality if there exists a
split (π, π0) with πI ∈ Z|I |, πC = 0 and π0 ∈ Z such that α⊤x ≤ β is valid
for both sets

Π1 ≡
{
x ∈ P : π⊤x ≤ π0

}
,

Π2 ≡
{
x ∈ P : π⊤x ≥ π0 + 1

}
.
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Geometric: split inequalities

Examples of split inequalities:

Gomory fractional/mixed-integer

Mixed-integer rounding

Chvatal-Gomory (a special case when Π2 = ∅)
lift-and-project (disjunctive cuts might not be)
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General-purpose cuts

1. Gomory

– Gomory’s fractional (for pure integer programming) [Gom10] (CPLEX)
– Gomory’s mixed integer [BCCN96]

2. mixed integer rounding [MW01]

3. Chvatal-Gomory

– strong CG [LL02]
– zero-half [CF96]
– mod-k [CFL00]

4. disjunctive programming

– disjunctive [Bal18] (CPLEX)
– lift-and-project [BB09] (for mixed 0/1 programming)
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General-purpose cuts (cont’d)

5. infeasibility proof (conflict analysis) [WBH21]

6. RLT [SA98]: reformulation-linearization techniques

7. sub-MIP: no good cuts

8. relax-and-lift [BM14]: i. construct a relaxation of an LP row by fixing
variables to its bounds; ii. try to lift binaries into the cut. (Gurobi)

9. learned: found incidentally while executing some presolve procedure,
not specific to any model structure. (Gurobi)
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Structural cuts

1. cover

– cover [HGH+19]
– flow cover [PVRW85,VRW86,GNS99]
– GUB cover [Wol90]

2. implied bound

– implied bound [Sav94]
– projected implied bound

3. clique [JP82,Sav94]

4. network

– flow path [VRW85,OW03,Chr09]
– multi-commodity flow [AR10]
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