

医单侧 医骨下

 \mathbb{R}

Cutting-Planes in Mixed-Integer Linear Programs: An **Overview**

Akang Wang wangakang@sribd.cn

Shenzhen Research Institute of Big Data

Mar. 15, 2023

Akang Wang wangakang@sribd.cn [Cutting-Planes in Mixed-Integer Linear Programs: An Overview](#page-33-0) 1

 \leftarrow \Box \rightarrow

マタトマチャマチャ

Consider a mixed-integer linear program:

$$
\min_{x} \quad c^{\top} x\n\n s.t. \quad x \in S,
$$
\n(1)

where $S \equiv \{x \in P : x_i \in \mathbb{Z} \ \forall i \in I\}$, $P \equiv \{x \in \mathbb{R}_+^n : Ax \leq b\}$, $I \subseteq [n]$. Let $conv(S)$ denote the convex hull of S.

 \leftarrow \Box \rightarrow

 \equiv

MILP

Shenzhen Research Institute of Big Data

Akang Wang wangakang@sribd.cn [Cutting-Planes in Mixed-Integer Linear Programs: An Overview](#page-0-0) 3

イロト イ部ト イモト イモト

 \equiv

MILP

Shenzhen Research Institute of Big Data

 $S \subseteq conv(S) \subseteq P$

Akang Wang wangakang@sribd.cn [Cutting-Planes in Mixed-Integer Linear Programs: An Overview](#page-0-0) 3

イロト イタト イミト イミト

 \equiv

Observation

 $conv(S)$ is a polyhedron, i.e., $conv(S)$ can be represented via finitely many linear inequalities. (Prove it!)

$$
\min_{x} c^{\top} x
$$

s.t. $x \in conv(S)$

イロト イ部 トイモト イモト

Observation

 $conv(S)$ is a polyhedron, i.e., $conv(S)$ can be represented via finitely many linear inequalities. (Prove it!)

Problem [\(1\)](#page-1-0) is equivalent to the following linear program

$$
\min_{x} c^{\top} x
$$

s.t. $x \in conv(S)$

マタト マミト マミト

Observation

 $conv(S)$ is a polyhedron, i.e., $conv(S)$ can be represented via finitely many linear inequalities. (Prove it!)

Problem [\(1\)](#page-1-0) is equivalent to the following linear program

$$
\min_{x} c^{\top} x
$$

s.t. $x \in conv(S)$

We aim to characterize $conv(S)$ (e.g., represent $conv(S)$ via linear inequalities).

 \leftarrow \Box \rightarrow

Since $conv(S)$ is a polyhedron, we can characterize $conv(S)$ from:

$$
conv(S) = \left\{x \in \mathbb{R}^n : \tilde{A}x \leq \tilde{b}\right\}
$$

 \blacksquare a geometric perspective: V-polyhedron/V-representation

Since $conv(S)$ is a polyhedron, we can characterize $conv(S)$ from: an algebraic perspective: H-polyhedron/H-representation

$$
\mathit{conv}(S) = \left\{x \in \mathbb{R}^n : \tilde{A}x \leq \tilde{b}\right\}
$$

 \blacksquare a geometric perspective: V-polyhedron/V-representation

Since $conv(S)$ is a polyhedron, we can characterize $conv(S)$ from: an algebraic perspective: H-polyhedron/H-representation

$$
conv(S) = \left\{x \in \mathbb{R}^n : \tilde{A}x \leq \tilde{b}\right\}
$$

a geometric perspective: V-polyhedron/V-representation

$$
conv(S) = \sum_{j} \alpha_j v^j + \sum_{\ell} \beta_{\ell} r^{\ell} ,
$$

extreme points extreme rays

, Minkowski-Weyl Theorem

イロト イ押ト イラト イラト

where $\sum_j \alpha_j = 1$ and $\alpha_j, \beta_\ell \geq 0.$

For generality purposes, we will proceed with an algebraic perspective and aim for a minimal representation of $conv(S)$.

Minimal representation

Shenzhen Research Institute of Big Data

The minimal representation of $conv(S)$ entails facet-defining inequalities.

 \leftarrow m \rightarrow \leftarrow

 \rightarrow \ll \equiv \rightarrow $\alpha \equiv \alpha$

È

$$
\alpha^{\top} x \leq \beta \text{ is a valid inequality for set } X \text{ if } \alpha^{\top} \bar{x} \leq \beta \quad \forall \bar{x} \in X.
$$

Definition (Face)

A face of a polyhedron $X \subseteq \mathbb{R}^n$ is a set of the form:

$$
\mathcal{F} \equiv X \cap \left\{ x \in \mathbb{R}^n : \alpha^\top x = \beta \right\},\
$$

where $\alpha^\top {\sf x} \le \beta$ is a valid inequality for $X.$

Definition (Facet)

Face F of set X is a facet iff $dim(F) = dim(X) - 1$.

Any valid inequality for set X that defines a facet is called a facet-defining inequality.

イロト イ押ト イラト イラト

Question

Since problem [\(4\)](#page-4-0) is an LP and can be solved in polynomial time, does it mean that problem [\(1\)](#page-1-0) can be solved in polynomial time? In another word, does an general MILP have a complexity of P ?

- -
	-

イロト イ母 トラ ミト

Question

Since problem [\(4\)](#page-4-0) is an LP and can be solved in polynomial time, does it mean that problem [\(1\)](#page-1-0) can be solved in polynomial time? In another word, does an general MILP have a complexity of P ?

Answer

Of course not, characterizing conv(S) is $N \mathcal{P}$ -hard.

- **The size of conv(S) is huge, i.e., the number of facets for conv(S) is** of an exponential size.
- **I** Identifying a violated facet-defining inequality of $conv(S)$ is as hard as solving the original problem [\(1\)](#page-1-0).

We try to outer-approximate $conv(S)$, rather than search for a minimal representation of $conv(S)$.

イロト イ母 トイモト イモト

Consider an LP relaxation of problem [\(1\)](#page-1-0):

min x $c^{\top}x$ s.t. $x \in P$.

The cutting-plane algorithm works as follows:

- i. Obtain the optimal solution \bar{x} to problem [\(2\)](#page-14-0). If $\bar{x} \in S$, then stop. Otherwise, go to step ii.
- ii. Identify an inequality $\alpha^\top x\leq \beta$ valid for S (or equivalently $\mathit{conv}(S))$ such that $\alpha^{\top} \bar{x} > \beta$. Take $P \leftarrow P \cap \big\{x \in \mathbb{R}^n : \alpha^{\top} x \leq \beta\big\}$, go to step i.

(2)

- Guarantee to identify a violated cut?
	- Yes.
- The complexity of separation problem?
	- manageable
- Will this algorithm terminate?
	- Yes, but with a slow convergence rate.

Numerical error

– Branch-and-Cut, readers are referred to for an amazing story $[C+07]$ $[C+07]$.

Akang Wang wangakang@sribd.cn [Cutting-Planes in Mixed-Integer Linear Programs: An Overview](#page-0-0) 10

- [\[AW13\]](#page-27-0) identifies 4 core components based on: presolve, primal heuristics, cutting-planes, and branching
- $[ABC^+20]$ concludes that presolve together with cutting-plane techniques are by far the most important individual tools contributing to the power of modern MIP solvers.

 $x \equiv x + x$

We attempt to answer the following questions:

- \blacksquare How to generate cuts?
- Cutting-planes in the literature/MIP solvers
- Strength of cutting-planes
- How to strengthen/lift cuts if possible?
- Which cuts are selected? [\[Ach09\]](#page-26-1)
- References: [\[Cor08\]](#page-29-0), [IP course notes by Ted Ralphs](https://coral.ise.lehigh.edu/~ted/teaching/ie418/)

algebraic perspective: e.g., Chvatal procedure

- i. Take combinations of the known valid inequalities.
- ii. Use rounding to produce stronger ones
- geometric perspective: e.g., split inequalities
	- i. Use a disjunction to generate several disjoint polyhedra whose union contains S
	- ii. Generate inequalities valid for the convex hull of this union

Given
$$
S \equiv \{x \in \mathbb{Z}^{|I|} \times \mathbb{R}^{|C|} : Ax \leq b\}
$$
 and any $u \in \mathbb{R}^m_+$, we have

$$
u^{\top} A x \le u^{\top} b
$$

$$
u^{\top} A_1 x_1 + u^{\top} A_C x_C \le u^{\top} b
$$

If $u^\top A_C = 0, u^\top A_I \in \mathbb{Z}^{|I|}$ and $u^\top b \notin \mathbb{Z}$, then

$$
u^{\top} A_I x_I \leq u^{\top} b
$$

$$
\sum_{i \in I} u^{\top} A_i x_i \leq \lfloor u^{\top} b \rfloor
$$

The resulting inequality is called a "Chvatal inequality".

 \leftarrow \Box

Algebraic: Chvatal procedure

Shenzhen Research Institute of Big Data

Given
$$
S \equiv \{x \in \mathbb{Z}_+^{|I|} \times \mathbb{R}_+^{|C|} : Ax \leq b\}
$$
 and any $u \in \mathbb{R}_+^m$, we have
\n
$$
u^\top Ax \leq u^\top b
$$
\n
$$
u^\top A_I x_I + u^\top A_C x_C \leq u^\top b
$$

If $u^\top A_{\mathcal{C}} \geq 0$ and $u^\top b \notin \mathbb{Z}$, then

$$
u^{\top} A_I x_I \leq u^{\top} b
$$

\n
$$
\sum_{i \in I} [u^{\top} A_i] x_i \leq u^{\top} b
$$

\n
$$
\sum_{i \in I} [u^{\top} A_i] x_i \leq [u^{\top} b]
$$

The resulting inequality is called a "Chvatal-Gomory inequality".

Clearly, the "Chvatal inequality" is a special case of "Chvatal-Gomory inequalities". OQ \leftarrow \Box \rightarrow

Definition (Split inequalities)

Given P and S , an inequality $\alpha^\top x\leq \beta$ is a split inequality if there exists a split (π,π_0) with $\pi_I\in\mathbb{Z}^{|I|},\pi_C=0$ and $\pi_0\in\mathbb{Z}$ such that $\alpha^\top x\leq\beta$ is valid for both sets

$$
\begin{aligned} \Pi_1 &\equiv \left\{ x \in P : \pi^\top x \le \pi_0 \right\}, \\ \Pi_2 &\equiv \left\{ x \in P : \pi^\top x \ge \pi_0 + 1 \right\}. \end{aligned}
$$

 \leftarrow \Box \rightarrow

Examples of split inequalities:

- Gomory fractional/mixed-integer
- Mixed-integer rounding $\mathcal{L}_{\mathcal{A}}$
- **n** Chvatal-Gomory (a special case when $\Pi_2 = \emptyset$)
- lift-and-project (disjunctive cuts might not be)

1. Gomory

- Gomory's fractional (for pure integer programming) [\[Gom10\]](#page-30-0) (CPLEX)
- Gomory's mixed integer [\[BCCN96\]](#page-27-1)
- 2. mixed integer rounding [\[MW01\]](#page-31-0)
- 3. Chvatal-Gomory
	- strong CG [\[LL02\]](#page-31-1)
	- zero-half [\[CF96\]](#page-28-1)
	- mod-k [\[CFL00\]](#page-28-2)
- 4. disjunctive programming
	- disjunctive [\[Bal18\]](#page-27-2) (CPLEX)
	- lift-and-project [\[BB09\]](#page-27-3) (for mixed $0/1$ programming)

 \leftarrow \Box \rightarrow

- 5. infeasibility proof (conflict analysis) [\[WBH21\]](#page-33-1)
- 6. RLT [\[SA98\]](#page-32-0): reformulation-linearization techniques
- 7. sub-MIP: no good cuts
- 8. relax-and-lift [\[BM14\]](#page-28-3): i. construct a relaxation of an LP row by fixing variables to its bounds; ii. try to lift binaries into the cut. (Gurobi)
- 9. learned: found incidentally while executing some presolve procedure, not specific to any model structure. (Gurobi)

1. cover

- $-$ cover [\[HGH](#page-30-1) $+19$]
- flow cover [\[PVRW85,](#page-31-2)[VRW86,](#page-32-1)[GNS99\]](#page-29-1)
- GUB cover [\[Wol90\]](#page-33-2)
- 2. implied bound
	- implied bound [\[Sav94\]](#page-32-2)
	- projected implied bound
- 3. clique [\[JP82,](#page-30-2) [Sav94\]](#page-32-2)
- 4. network
	- flow path [\[VRW85,](#page-32-3) [OW03,](#page-31-3) [Chr09\]](#page-29-2)
	- multi-commodity flow [\[AR10\]](#page-26-2)

- [ABG+20] Tobias Achterberg, Robert E Bixby, Zonghao Gu, Edward Rothberg, and Dieter Weninger, Presolve reductions in mixed integer programming, INFORMS Journal on Computing 32 (2020), no. 2, 473–506.
- [Ach09] Tobias Achterberg, Scip: solving constraint integer programs, Mathematical Programming Computation 1 (2009), no. 1, $1 - 41$.
- [AR10] Tobias Achterberg and Christian Raack, The mcf-separator: detecting and exploiting multi-commodity flow structures in mips, Mathematical Programming Computation 2 (2010), no. 2, 125–165.

- [AW13] Tobias Achterberg and Roland Wunderling, Mixed integer programming: Analyzing 12 years of progress, Facets of combinatorial optimization, Springer, 2013, pp. 449–481.
- [Bal18] Egon Balas, *Disjunctive programming*, Springer, 2018.
- [BB09] Egon Balas and Pierre Bonami, Generating lift-and-project cuts from the lp simplex tableau: open source implementation and testing of new variants, Mathematical Programming Computation 1 (2009), no. 2-3, 165–199.
- [BCCN96] Egon Balas, Sebastian Ceria, Gérard Cornuéjols, and N Natraj, Gomory cuts revisited, Operations Research Letters 19 (1996), no. 1, 1–9.

[BM14] Pierre Bonami and Michel Minoux, A comparison of some valid inequality generation methods for general 0–1 problems, Applications of Combinatorial Optimization (2014), 49–72.

- $[C+07]$ Gérard Cornuéjols et al., Revival of the gomory cuts in the 1990's., Annals of Operations Research 149 (2007), no. 1, 63–66.
- $[CF96]$ Alberto Caprara and Matteo Fischetti, $\{0,$ $1/2$ }-chvátal-gomory cuts, Mathematical Programming 74 (1996), no. 3, 221–235.
- [CFL00] Alberto Caprara, Matteo Fischetti, and Adam N Letchford, On the separation of maximally violated mod-k cuts, Mathematical Programming 87 (2000), no. 1, 37–56.

- [Chr09] Philipp M Christophel, Separation algorithms for cutting planes based on mixed integer row relaxations, Ph.D. thesis, Ph. D. Thesis, Universität Paderborn, Paderborn, 2009.
- [Cor08] Gérard Cornuéjols, Valid inequalities for mixed integer linear programs, Mathematical programming 112 (2008), no. 1, 3–44.
- [GNS99] Zonghao Gu, George L Nemhauser, and Martin WP Savelsbergh, Lifted flow cover inequalities for mixed 0-1 integer programs, Mathematical Programming 85 (1999). no. 3, 439–467.

 \leftarrow \Box \rightarrow

- 4 何 ト 4 戸 ト 4 戸 ト

- [Gom10] Ralph E Gomory, Outline of an algorithm for integer solutions to linear programs and an algorithm for the mixed integer problem, 50 Years of Integer Programming 1958-2008, Springer, 2010, pp. 77–103.
- [HGH⁺19] Christopher Hojny, Tristan Gally, Oliver Habeck, Hendrik Lüthen, Frederic Matter, Marc E Pfetsch, and Andreas Schmitt, Knapsack polytopes: a survey, Annals of Operations Research (2019), 1–49.
- [JP82] Ellis L Johnson and Manfred W Padberg, Degree-two inequalities, clique facets, and biperfect graphs, North-Holland Mathematics Studies, vol. 66, Elsevier, 1982, pp. 169–187.

[LL02] Adam N Letchford and Andrea Lodi, Strengthening chvátal–gomory cuts and gomory fractional cuts, Operations Research Letters 30 (2002), no. 2, 74–82.

[MW01] Hugues Marchand and Laurence A Wolsey, Aggregation and mixed integer rounding to solve mips, Operations research 49 (2001), no. 3, 363–371.

[OW03] Francisco Ortega and Laurence A Wolsey, A *branch-and-cut* algorithm for the single-commodity, uncapacitated, fixed-charge network flow problem, Networks: An International Journal 41 (2003), no. 3, 143–158.

[PVRW85] Manfred W Padberg, Tony J Van Roy, and Laurence A Wolsey, Valid linear inequalities for fixed charge problems, Operations Research 33 (1985), no. 4, 842–861.

イロト イ母 トイモト イモト

[SA98] Hanif D Sherali and Warren P Adams, Reformulation-linearization techniques for discrete optimization problems, Handbook of Combinatorial Optimization: Volume1–3 (1998), 479–532.

- [Sav94] Martin WP Savelsbergh, Preprocessing and probing techniques for mixed integer programming problems, ORSA Journal on Computing 6 (1994), no. 4, 445–454.
- [VRW85] Tony J Van Roy and Laurence A Wolsey, Valid inequalities and separation for uncapacitated fixed charge networks, Operations Research Letters 4 (1985), no. 3, 105–112.

 $[VRW86]$ $_______\$, Valid inequalities for mixed 0–1 programs, Discrete Applied Mathematics 14 (1986), no. 2, 199–213.

イロト イ押ト イラト イラト

[WBH21] Jakob Witzig, Timo Berthold, and Stefan Heinz, Computational aspects of infeasibility analysis in mixed integer programming, Mathematical Programming Computation 13 (2021), no. 4, 753–785.

[Wol90] Laurence A Wolsey, Valid inequalities for 0–1 knapsacks and mips with generalised upper bound constraints, Discrete Applied Mathematics 29 (1990), no. 2-3, 251–261.