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MILP

Consider a mixed-integer linear program:

min
x

c⊤x

s.t. x ∈ S ,
(1)

where S ≡ {x ∈ P : xi ∈ Z ∀i ∈ I} ,P ≡
{
x ∈ Rn

+ : Ax = b
}
, I ⊆ [n].

We aim to identify Gomory cuts for problem (1).
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Who is Ralph E. Gomory?

Check out http://www.ralphgomory.org/.
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Outline

Gomory fractional inequalities (for pure integer
programming) [Gom10]

Gomory mixed-integer inequalities (GMI)

The relationship between GMI and split inequalities (MIR and
lift-and-project)

How to strengthen GMI

Reading materials: [C+07,Cor08,Fuk10,CCZ+14]
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Generating cutting-planes

In our previous talk, we discussed two perspectives for generating valid
inequalities for MILPs:

algebraic perspective: e.g., Chvatal procedure

i. Take combinations of the known valid inequalities.
ii. Use rounding to produce stronger ones

geometric perspective: e.g., split inequalities

i. Use a disjunction to generate several disjoint polyhedra whose union
contains S

ii. Generate inequalities valid for the convex hull of this union

Remark

The geometric perspective provides a natural way to strengthen those
generated inequalities.
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Gomory fractional inequalities

Given a pure integer program (i.e., I = [n]), consider a simplex tableau

xi +
∑
j∈N

āijxj = āi0 ∀i ∈ B. (2)

If āi0 /∈ Z for some i ∈ B, then apply the Chavatal-Gomory procedure

xi +
∑
j∈N

⌊āij⌋xj ≤ ⌊āi0⌋. (3)

By subtracting (3) from (2), we obtain∑
j∈N

fijxj ≥ fi0, (4)

where fij = āij − ⌊āij⌋. (4) is called a Gomory fractional inequality.
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By subtracting (3) from (2), we obtain∑
j∈N

fijxj ≥ fi0, (4)
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Gomory fractional inequalities

Example

max
x

5.5x1 + 2.1x2

s.t. − x1 + x2 ≤ 2
8x1 + 2x2 ≤ 17
x1, x2 ∈ Z+

(5)

x2 + 0.8x3 + 0.1x4 = 3.3 =⇒ 8

3
x3 +

1

3
x4 ≥ 1

Remarks

Gomory fractional inequality (4) always cuts off the current solution x̄ .

[Gom10,WN99] proposed a finite cutting plane algorithm (i.e.,
lexicographic dual simplex) for pure integer programming problems
using Gomory fractional cuts.
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GMI

Given a general MILP, consider a simplex tableau

xi = āi0 −
∑
j∈N

āijxj ∀i ∈ B. (6)

We can rewrite the RHS of (6) as

⌊āi0⌋+ fi0 −
∑

j∈N∩I :
fij≤fi0

(⌊āij⌋+ fij) xj −
∑

j∈N∩I :
fij>fi0

(⌈āij⌉ − 1 + fij) xj −
∑

j∈N∩C
āijxj

As a result,

z ≡ fi0 −
∑

j∈N∩I :
fij≤fi0

fijxj −
∑

j∈N∩I :
fij>fi0

(fij − 1) xj −
∑

j∈N∩C
āijxj is an integer
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xi = āi0 −
∑
j∈N
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GMI

Hence, the following disjunction must be valid.

z ≤ 0 ∨ z ≥ 1 (7)

Simplify these inequalities, we have∑
j∈N∩I :
fij≤fi0

−fij
1− fi0

xj +
∑

j∈N∩I :
fij>fi0

1− fij
1− fi0

xj +
∑

j∈N∩C

−āij
1− fi0

xj ≥ 1

∑
j∈N∩I :
fij≤fi0

fij
fi0

xj +
∑

j∈N∩I :
fij>fi0

fij − 1

fi0
xj +

∑
j∈N∩C

āij
fi0

xj ≥ 1
(8)
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GMI

One can have the following by combining inequalities (8)

Gomory’s Mixed-Integer Cuts

∑
j∈N∩I :
fij≤fi0

fij
fi0

xj +
∑

j∈N∩I :
fij>fi0

1− fij
1− fi0

xj +
∑

j∈N∩C :
āij<0

−āij
1− fi0

xj +
∑

j∈N∩C :
āij≥0

āij
fi0

xj ≥ 1
(9)

Example

Consider problem (5), we have a row of its simplex tableau

x2 + 0.8x3 + 0.1x4 = 3.3 =⇒ 2

7
x3 +

1

3
x4 ≥ 1
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GMI

Remarks

The inequality (10) always cuts off the basic feasible solution x̄ .

One can rewrite inequality (9) as∑
j∈N∩I

min

{
fij
fi0

,
1− fij
1− fi0

}
xj +

∑
j∈N∩C

max

{
−āij
1− fi0

,
āij
fi0

}
xj ≥ 1

(10)

For pure integer programs, GMI (9) dominates Gomory fractional
inequality (4).

When rewriting (6), one can replace āij by ⌊āij⌋+ fij for each
j ∈ N ∩ I . However, the resulting cuts will be dominated by (9).

When formulating (7), one may want to use z ≤ k ∨ z ≥ k + 1
where k ̸= 0. This would fail to produce a desirable system.

A finite cutting-plane algorithm for solving MILPs via GMI does not
exist [WN99].
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Basis and corner polyhedron

Consider a simplex tableau that corresponds to basis B:

xi = āi0 +
∑
j∈N

−āijxj ∀i ∈ B.

The corner polyhedron associated with B is given by

P(B) ≡ x̄ + Cone(
{
r j
}
j∈N)

= {x ∈ Rn : Ax = b, xj ≥ 0 ∀j ∈ N} .
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Intersection cuts

Consider a convex set K such that x̄ ∈ int(K ) and int(K ) ∩ S = ∅, then
one can generate an intersection cut given by∑

j∈N

xj
αj (K )

≥ 1,

where αj (K ) ≡ max
α

{
α : x̄ + αr j ∈ K

}
.

Interested readers are referred to “An Introduction to Intersection Cut and
Their Applications”.
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Split inequalities

Definition (Split inequalities)

Given P and S , an inequality α⊤x ≤ β is a split inequality if there exists a
split (π, π0) with πI ∈ Zp, πC = 0 and π0 ∈ Z such that α⊤x ≤ β is valid
for both sets

Π1 ≡
{
x ∈ P : π⊤x ≤ π0

}
,

Π2 ≡
{
x ∈ P : π⊤x ≥ π0 + 1

}
.
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Generating intersec. cuts from a split

Consider an intersection cut induced by a convex set{
x ∈ Rn : π0 ≤ π⊤x ≤ π0 + 1

}
,

where (π, π0) is a split with π0 ≡ ⌊π⊤x̄⌋, we can compute

αj = max
α

{
α : π0 ≤ π⊤(x̄ + αr j) ≤ π0 + 1

}
=


1−ϵ(π,π0)

π⊤r j
if π⊤r j > 0,

ϵ(π,π0)
−π⊤r j

if π⊤r j < 0,

+∞ otherwise.

where ϵ (π, π0) ≡ π⊤x̄ − π0.
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GMI as split ineq.

Theorem

The GMI cut obtained from the row of the simplex tableau, in which xi is
basic, is the same as the intersection cut induced by a convex set{
x ∈ Rn : π0 ≤ π⊤x ≤ π0 + 1

}
, where

πj ≡


⌊āij⌋ if j ∈ N and fij ≤ fi0,

⌈āij⌉ if j ∈ N and fij > fi0,

1 if j = i ,

0 otherwise,

π0 ≡ ⌊π⊤x̄⌋.
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GMI as split ineq.

Proof.

ϵ (π, π0) = π⊤x̄ − π0 = x̄i − ⌊x̄i⌋ = fi0

π⊤r j = π⊤
B r

j
B + π⊤

N r
j
N =


⌊āij⌋ − āij = −fij if j ∈ N ∩ I : fij ≤ fi0

⌈āij⌉ − āij = 1− fij if j ∈ N ∩ I : fij > fi0

−āij if j ∈ N ∩ C
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Strengthen GMI

There are two perspectives to strengthen GMI:

modify the basis while keeping the disjunction fixed

– lift-and-project cut [BP03]

modify the disjunction while keeping the basis fixed

– reduce-and-split cut [ACL05]

One may combine the above two perspectives to further strengthen GMI:

– pivot-and-reduce [WKS11]

– alternate between lift-and-project and reduce-and-split [BCKN13]

In this talk, we will only introduce reduce-and-split cuts.
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Reduce-and-split

Motivation: for j ∈ N ∩ C , smaller |āij | values might lead to stronger GMI
cuts.
Consider two rows of a simplex tableau:

xi = āi0 −
∑
j∈N

āijxj , xk = āk0 −
∑
j∈N

ākjxj .

Given any δ ∈ Z, we obtain

xi + δxk = āi0 + δāk0 −
∑
j∈N

(āij + δākj) xj .

We then aim to minimize
∑

j∈N∩C (āij + δākj)
2 to choose δ, which is a

fairly easy task.
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Reduce-and-split

Remarks

Reduce-and-split cuts do not dominate GMI cuts.

Geometric interpretation: given two splits
(
πi , πi

0

)
,
(
πk , πk

0

)
defined

as in Lemma 2, the reduce-and-split procedure is simply to utilize
another split (πi + δπk , π0) with π0 = ⌊(πi + δπk)⊤x̄⌋ to generate
GMI cuts.
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Exercise

Consider a mixed-integer linear program with general variable bounds:

min
x

c⊤x

s.t. Ax = b

xLi ≤ x ≤ xUi ∀i ∈ [n]
xi ∈ Z ∀i ∈ I

(11)

where −∞ ≤ xLi ≤ xUi ≤ ∞ ∀i ∈ [n].
Let’s write a simplex tableau associated with a basis B:

xi = āi0 −
∑
j∈NL

āij

(
xj − xLj

)
+

∑
j∈NU

āij

(
xUj − xj

)
∀i ∈ B, (12)

where NL denotes the index set of non-basic variables at their lower
bounds and NU ≡ N \ NL.
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Exercise (Cont’d)

If āi0 /∈ Z, using the simplex tableau (12), we can derive an GMI inequality
as follows:∑
j∈NL∩I

min

{
fij
fi0

,
1− fij
1− fi0

}(
xj − xLj

)
+

∑
j∈NL∩C

max

{
−āij
1− fi0

,
āij
fi0

}(
xj − xLj

)
+

∑
j∈NU∩I

min

{
fij

1− fi0
,
1− fij
fi0

}(
xUj − xj

)
+

∑
j∈NU∩C

max

{
āij

1− fi0
,
−āij
fi0

}(
xUj − xj

)
≥ 1.

(13)
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Exercise (Cont’d)

Remarks

As long as xLi and xUi are valid bounds for xi , then the resulting GMI
inequality (13) will be correct.

For a superbasic variable j , since āij = 0 (due to B−1aj = 0), we can
simply skip variable j .

Given a mixed binary program (i.e., xi ∈ {0, 1} for i ∈ I ), let F0 and
F1 ⊆ I denote the index sets of variables that have been fixed at 0
and 1, respectively, in some BB node. One can enforce F0 ⊆ NL ∩ I
and F1 ⊆ NU ∩ I and generate a GMI inequality (13), which will be
globally valid inequality [BCCN96]. We cannot extend this to general
MILPs.
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