

An Introduction to Cover Inequalities: Part I

Akang Wang wangakang@sribd.cn

Shenzhen Research Institute of Big Data

June 5, 2024

Akang Wang wangakang@sribd.cn

An Introduction to Cover Inequalities: Part I

<ロト < 団ト < 団ト < 団ト < 団ト -

Ξ

Consider a knapsack set:

$$\mathsf{K} \equiv \left\{ x \in \{0,1\}^n : \mathbf{a}^\top x \le b \right\},\tag{1}$$

where $0 < a_i \leq b$ for all $i \in [n]$ and $\sum_{i=1}^n a_i > b$.

Remark

- If $a_i < 0$, we can complement variable x_i ; if $a_i > b$, we set $x_i = 0$.
- Applications: resource allocation, vehicle routing, etc.

Let $P \equiv conv(K)$, we call P a *knapsack polytope*. We are interested in characterizing P.

Observation

dim(P) = n. (e.g., n + 1 affinely independent points e^i for $i \in [n]$ and 0)

Definition (Affinely independent)

Vectors $x^1, x^2, ..., x^m$ are affinely independent if $\lambda_i = 0$ for all $i \in [m]$ is a unique solution to the system

$$\sum_{i=1}^m \lambda_i x^i = 0, \sum_{i=1}^m \lambda_i = 0$$

Definition (Affine Dimension)

The dimension of a set $S \subseteq \mathbb{R}^n$, denoted by $\dim(S)$, is the maximum number of affinely independent points in S minus one.

イロト イポト イヨト イヨト

Definition (Cover Inequalities)

A set $C \subseteq [n]$ is called a cover w.r.t. K if $a(C) \equiv \sum_{i \in C} a_i > b$. It is called minimal if it does not contain a proper subset that is a cover, i.e., $C \setminus \{i\}$ is not a cover for any $i \in C$. The corresponding (minimal) cover inequality (CI)

$$\sum_{i\in C} x_i \le |C| - 1.$$
⁽²⁾

イロト イポト イヨト イヨト

is valid for K.

Remark

In general, ineq. (2) is not guaranteed to define a facet of $P^{a,b}$.

Proposition

Let C denote a minimal cover w.r.t. K, then (2) defines a facet of the knapsack polytope

$$\boldsymbol{P_{C}} \equiv \textit{conv}\left\{x \in \{0,1\}^{C} : \sum_{i \in C} a_{i}x_{i} \leq b\right\},\$$

and it defines a face of P of dimension at least |C| - 1.

《日》 《圖》 《臣》 《臣》

Proof.

Since (2) is valid for P_C , hence

$$P_C \cap \left\{ x \in \mathbb{R}^C : \sum_{i \in C} x_i = |C| - 1 \right\}$$

defines a non-empty face. Since the set of points $(1 - e^i)$ for $i \in C$ are affinely independent, thus (2) defines a facet of P_C . Clearly, (2) defines a face of P:

$$P \cap \left\{ x \in \mathbb{R}^n : \sum_{i \in C} x_i = |C| - 1 \right\},$$

The dimension of this face is at least |C| - 1.

イロト イポト イヨト イヨト

E

Definition (Extended Cover Inequalities)

Let $a^* \equiv \max_{i \in C} a_i$ and define the extension of C as $E(C) \equiv C \cup \{i \in [n] \setminus C : a_i \ge a^*\}$, the extended cover inequality (ECI)

$$\sum_{\in E(C)} x_i \le |C| - 1 \tag{3}$$

is valid for K.

Remark

In general, ECIs are not guaranteed to define facets of *P*.

イロト イポト イヨト イヨト

Remark

If C is the family of all minimal covers C w.r.t. K, then

$$\mathcal{K} = \left\{ x \in \{0,1\}^n : \sum_{i \in C} x_i \le |C| - 1 \quad \forall C \in \mathcal{C} \right\},$$
$$\mathcal{K} = \left\{ x \in \{0,1\}^n : \sum_{i \in E(C)} x_i \le |C| - 1 \quad \forall C \in \mathcal{C} \right\}.$$

Akang Wang wangakang@sribd.cn

<ロト (四) (三) (三) (三)

Ξ

Definition (Lifted Cover Inequalities)

Given a partition of a minimal cover C into two disjoint sets C_1 and C_2 with $C_1 \neq \emptyset$, we consider some $\hat{\alpha}_i \ge 0$, $\tilde{\alpha}_i \ge 0$ such that an equality given by (4) is valid for K.

$$\sum_{i \in C_1} x_i + \sum_{i \in [n] \setminus C} \hat{\alpha}_i x_i + \sum_{i \in C_2} \tilde{\alpha}_i x_i \le |C_1| - 1 + \sum_{i \in C_2} \tilde{\alpha}_i$$
(4)

(4) is called "Lifted Cover Inequality" (LCI).

Remark

- If $C_2 = \emptyset$, it is often called "simple LCI"; otherwise, "general LCI".
- Maximally lifting up all variables in [n] \ C, i.e., making α̂_i as large as possible, and maximally lifting down all variables in C₂, i.e., making α̂_i as small as possible.

Up-Lifting / Down-Lifting

Take an inequality $\sum_{i \in S} \alpha_i x_i \leq \beta$ that is valid for $\{x \in K : x_i = 0 \ \forall i \in S\} / \{x \in K : x_i = 1 \ \forall i \in S\}$ and turn it into a valid inequality for K.

- sequential lifting
- simultaneous lifting (a.k.a. superadditive lifting)

《日》 《圖》 《臣》 《臣》

Proposition (Sequential Up-Lifting, [Gu95]) Suppose $K \subseteq \{0,1\}^n$, $K^d \equiv \{x \in K : x_1 = d\}$ where $d \in \{0,1\}$. Suppose

$$\sum_{i=2}^{n} \alpha_i x_i \le \beta \tag{5}$$

is valid for K^0 . If $K^1 \neq \emptyset$, then

$$\alpha_1 x_1 + \sum_{i=2}^n \alpha_i x_i \le \beta \tag{6}$$

is valid for K, where $\alpha_1 \equiv \beta - \xi$ and $\xi \equiv \max_{x \in K^1} \sum_{i=2}^{n} \alpha_i x_i$. Moreover, if K^0 is full-dimensional and (5) defines a facet of $conv(K^0)$, then K is full-dimensional and (6) defines a facet of K.

Akang Wang wangakang@sribd.cn

Proof.

The validity of (6) is obvious. If K^0 is full-dimensional and (5) defines a facet of $conv(K^0)$, we consider |C| affinely independent points

$$\begin{array}{c} (0,1,1,...,1,0),\\ (0,1,1,...,0,1),\\ \vdots\\ (0,0,1,...,1,1). \end{array}$$

Now we consider a new point

(1, 0, ..., 1, 0, 1).

Together, there are |C| + 1 affinely independent points (i.e., dimension increases by 1).

To find ξ , we consider the following subproblem:

$$\max_{x \in \{0,1\}^n} \sum_{i=2}^n \alpha_i x_i$$

s.t.
$$\sum_{i \in [n]} a_i x_i \le b$$
$$x_1 = 1$$
(7)

Remark

- If $\alpha_i \in \mathbb{Z}$, then $\xi \in \mathbb{Z}$.
- When applying the sequential up-lifting to tighten Cls, (7) can be solved by *dynamic programming* in O(n|C|).
- All coefficient lifting can be computed in $\mathcal{O}(n^2|C|)$ time. This can be further reduced to $\mathcal{O}(n|C|)$ [Zem89].

Example

Consider a knapsack inequality $4x_1 + 5x_2 + 6x_3 + 7x_4 + 9x_5 \le 13$. The CI associated with a minimal cover $C \equiv \{2, 3, 4\}$ is $x_2 + x_3 + x_4 \le 2$. Lifting this inequality, we have two choices in ordering $[n] \setminus C \equiv \{1, 5\}$. Lifting the variable x_1 :

$$\begin{aligned} \alpha_1 &\equiv 2 - \max_{x \in \{0,1\}^C} \left\{ \sum_{i \in C} x_i : \sum_{i \in C} a_i x_i \le \beta - a_1 \right\} \\ &= 2 - \max_{x \in \{0,1\}^C} \left\{ x_2 + x_3 + x_4 : 5x_2 + 6x_3 + 7x_4 \le 13 - 4 \right\} \\ &= 1. \end{aligned}$$

Then lifting the variable x_5 yields $\alpha_5 = 1$. This results in a simple LCI: $x_1 + x_2 + x_3 + x_4 + x_5 \le 2$. If we reverse the ordering, we will obtain a simple LCI: $x_2 + x_3 + x_4 + 2x_5 \le 2$.

イロン イボン イヨン イヨン 二日

Remark

 As shown by [GNS99], identifying a lifting sequence that leads to the most violated LCI is NP-hard even for simple LCIs.

< ロト (同) (三) (三)

Proposition (Sequential Down-Lifting, [Gu95])

Suppose (5) is valid for K^1 . If $K^0 \neq \emptyset$, then

$$\alpha_1 x_1 + \sum_{i=2}^n \alpha_i x_i \le \beta + \alpha_1 \tag{8}$$

is valid for K, where $\alpha_1 \equiv \xi - \beta$ and $\xi \equiv \max_{x \in K^0} \sum_{i=2}^n \alpha_i x_i$. Moreover, if K^1 is full-dimensional and (5) defines a facet of $conv(K^1)$, then K is full-dimensional and (8) defines a facet of K.

Empirical, what is a good lifting sequence?

- Integer-valued variables should be lifted after fractional variables.
- Determine the sequence based on fractionality or reduced cost.

4 4 1 1

< E >

- mixed 0-1 knapsack set
- integer knapsack set
- mixed-integer knapsack set [Ata03]
- packing: $\left\{x \in \{0,1\}^n : a^\top x \ge b\right\}$

Readers are referred to [HGH+19, Gu95] for more details.

(4月) (1日) (日)

References I

Shenzhen Research Institute of Big Data

- [Ata03] Alper Atamtürk, *On the facets of the mixed–integer knapsack polyhedron*, Mathematical Programming **98** (2003), no. 1, 145–175.
- [GNS99] Zonghao Gu, George L Nemhauser, and Martin WP Savelsbergh, Lifted cover inequalities for 0-1 integer programs: Complexity, INFORMS Journal on Computing 11 (1999), no. 1, 117–123.
- [Gu95] Zonghao Gu, *Lifted cover inequalities for 0-1 and mixed 0-1* programs, Georgia Institute of Technology, 1995.
- [HGH⁺19] Christopher Hojny, Tristan Gally, Oliver Habeck, Hendrik Lüthen, Frederic Matter, Marc E Pfetsch, and Andreas Schmitt, *Knapsack polytopes: a survey*, Annals of Operations Research (2019), 1–49.

< ロト (同) (三) (三)

[Zem89] Eitan Zemel, *Easily computable facets of the knapsack polytope*, Mathematics of Operations Research **14** (1989), no. 4, 760–764.

Э