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Problem Definition

O Optimization problem:

minimize Ly
xT

subject to =z € PNQ

P :={x € R",Ax < b,x = 0} is a polyhedral set, where A € R™", b € R"

Q < R" represents a non-convex, “complicated” set, such as integrality,
reverse convex, etc.

O A polyhedral relaxation:

minimize clx
€T

subject to Az <b

x>0
Assume the LP optimality is achieved at x

Q: How to generate a valid cut H suchthat PN Q €S Handx ¢ H?
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Standard Form of an LP

O Introduce slack variables s and let t := (x, s) represent the variables in LP
for convenience

minimize ¢!z minitmize et
x,s
subject to Ax 4+ s=20 > subject to At=1b
x,s >0 t>0
(J Notation

e N index set of structural variables x, [N| = n
« | index set of basic variables, |[I| = m
e | index set of non-basic variables, |/|=n
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Intersection Cuts

v" A convex set S contains X but no any feasible point within its interior

e S is a convex set
o T € int(S)

e int(S)N(PNQ)=10

v Follow the extreme rays at X and find the intersection points

v Obtain the intersection cut that goes through all intersection points

Balas, E., 1971. Intersection cuts—a new type of cutting planes for integer programming. Operations Research, 19(1), pp.19-39.
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Extreme Rays

QA Find its neighboring extreme point &/, then 1’/ == x/ — X

O Move from one extreme point X to its neighboring X

extreme point X) when a non-basic variable enters the J
basis and a basic variable leaves the basis
X

[ Simple tableau

Basic Non-basic .
) ] Focus on structural variables x rows
1 * x| -
1 ) ty gz ) agt; YieINN Basic
1 * a’ij * — . jEJ
2 ty x; o0 Vi € J NN Non-basic
1 % x| L A

=|
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Extreme Rays
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[ Choose a non-basic variable (structural or slack) t; for some j € ] and let

t; enter the basis (assume non-degeneracy)

xizii_zaijtj VieINN ] Lq :fz_a”ajg
, pivot
jed —_— z; =|0
x; =|0 Yie JNN z; ={¢
X x/
Q Anextremerayr =x/ — i
Tf:~éz—j§ Vie INN £>0 T:f:
rl =0 Vie JON\{j} =—> 1r!=
J _ N J
r; =§ ifjeN T

Other non-basic variables will
stay unchanged (still at 0)

Vie INN
Vie JOAON\{j}
itjeN

1

No need to track
slack variables s
rows

0
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Simplicial Conic Relaxation

L # of extreme rays = # of non-basic variables = |J| =n

1 These extreme rays are linearly independent

Q DefineasetC = {x|x =X+ X, 477,24, =0Vj €]}, then P S C
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Intersection Points

0 The convex set S is intersected by a halfline 7 = X + 4,7/, where ; = 0

. ).
ma}ilgt(l)lze 4 (%)

subject to Z + \;7’ € S

:E+)\jrj68 \V’)\JEO
O This problem (*) can be solved in polynomial time (e.g. line search) and

two cases will arise:

— (%) has a unique solution /Tj >0 J1

— The obj. is unbounded (7 € Rec(S), set A; = +) J2
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Intersection Cuts

Q The intersection cut f7x < B, is the halfspace whose boundary contains
each intersection point (j € /;) and that is parallel to each extreme ray
(j € J5) in Rec(S)

Br(x+\r?) =Py Vi€
gLy =0 VjeJ
O A system of linear equalities

— |J1] + |J2| = n equations and n + 1 variables (8 € R", B, € R)

— aunique solution (except for a constant factor) since {r’|j € J} are
linearly independent

— analytical solution: B0 = » ;- %bi —1 Bi =2 ica %aij VjeN
O An equivalent but more popular velrsion in the literature
> 5tz
jeJ =

Balas, E., 1971. Intersection cuts—a new type of cutting planes for integer programming. Operations Research, 19(1), pp.19-39. 10
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Geometric Interpretation

The larger S - the deeper cut The intersection cut is
parallel to an extreme ray
in Rec(S)

11
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Degeneracy

O The degeneracy will not affect the correctness of the intersection cut
formula

[ The choice of a basis will lead to different (and valid) intersection cuts

O In general, no dominance relationship among these cuts is guaranteed

12
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Implementation Details

v’ A; should be approximated below for numerical validity
— avalid approximation to the intersection cut

CENTER

v’ Scale a cut and perform reduction on small coefficients if necessary for
numerical stability

v" For a more generic LP as follows, the derivation for intersection cut has to

be updated
— extreme rays miﬂimmize c'a
— intersection cut formula subject to Az <b
t; —tr tY —t; L U
i Y J J TS S
_ + - >1 -
YAty i

jeJkb jeJv
JE: index set of non-basic variables at lower bounds
JY: index set of non-basic variables at upper bounds

13
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minimize Ly
€T

subject to Az =0
x>0
T € 4 1 €N

O The hypersphere can be selected as a valid convex set S
e S is a convex set J

o & int(S) v

o int(S)N(PNQ)=10 ﬂ/

1 Hard to find the “optimal” set S
d /Tj can be identified analytically

14
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Reverse Convex Programming

A constraint g(x) = 0 is called reverse convex if g is convex

minimize clx
reIR™

VkE=1,2,....p Convex
Vi=1,2,....q Reverse Convex

where f, (x) and g;(x) are both convex on R"

\ L2

T1

" fi.(x) < 0 can be outer-approximated by linear inequalities /\

= g;(x) = 0 represent the “complicated” constraints

xf+x2>1

Hillestad, R.J. and Jacobsen, S.E., 1980. Reverse convex programming,. Applied Mathematics and Optimization, 6(1), pp.63-78. 15
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Reverse Convex Programming
minimize ¢!z / \
subject to Az <b \J —
x>0

xt+x(<1

d Define S = {x € R™: g;(x) < 0} for some [ such that g;(¥) < 0

e S is a convex set J

o € int(S) v

e int(S)N(PNQ) =10 J

L A, can be identified via solving gl—(f + Ajrj) = 0with4; =0

Hillestad, R.J. and Jacobsen, S.E., 1980. Reverse convex programming, Applied Mathematics and Optimization, 6(1), pp.63-78. 16
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Polynomial Programming

minimize  po(x)
€T
subject to p;(z) <0 Vi=1,2....m

where p;(x) is a polynomial function with respect to x € R"
- eg.p;(x) =2+ 3x; —3.2x,x% +4x5,d = 4

Deﬁne mr(.X) = [1’ xl’ xz xn' x12'x1x21 "'I‘x')?ll ;x‘;rl]Tl Where r= [dmax/Z]
pi(x) = mI () A;m,(z) <0 <= (A;,m.(z) -m!(z)) <0

where 4; is an appropriately defined symmetric matrix ) <‘23> _ Z Za'jb'j
2 1.L" 11 =1 7 1
Momﬁ -9@ 9( Iat| n{lifted §|gagf:f e 2 o |at
Xo Iﬁ 1 = 2 xime  x3 xiwo| @3
L nglyl is im%lxgg Z?X%o T1T2 J,% :1:%:{:2 331:1:% .@% B T
X= X1 X42 gllb atti% % OT‘% T3 J‘%’ﬂ%v#iiﬁl TATED | me(z)m,, (z)
Xs1 Xé ! by rdwy wiad ey’ wdws] wradt |
| X61 sz X63 Xea T65 5 3

il Gy 200= wi{a) Mg ) g

Bienstock, D., Chen, C. and Munoz, G, 2016 Outer-product-free sets for polynomlal optimization and oracle-based cuts. arXzv
preprint arXiv:1670.04604. 17
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Polynomial Programming

Linear | | Convex || Non-convex
X =m,(z) -ml(z) <= consistency, X = 0,rank(X) <1

2 2 7]
1 T 9 X1 1Ty XI5
I x% T1X2 x% x%xg xlx%
X — i) 19 x% $%$2 $1$% x%
— 2 3 2 2,.2 3 2,.2 Di | ies X:: > 0
T1X9 $%$2 £1$% ﬁ?ﬁg x%x% $1$%
x% xlx% $% $%$% $1$% x%

KXoz = X53 = X35 = X6 Q:={X e S""X = 0,rank(X) <1}
Polyhedral Relaxation
minimize  (Ag, X)

X
subject to (A;, X) <0 Vi=1,2....m
X1 =1
Xii >0 Vi=2..,n
consistency

Bienstock, D., Chen, C. and Munoz, G., 2016. Outer-product-free sets for polynomial optimization and oracle-based cuts. arXzv
preprint arXip:1610.04604. 18
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Oracle Ball Cut

O Define S as a ball B(X,r) centering at X with a radius r

e S is a convex set
o X cint(S)
o int(S)N(PNQ)=10

mini};nize |1 X —Y]|F (#)

subject to
:

3 Problem (#) : calculate the shortest distance between X and a point from
¢

— it can be analytically solved (4; = r = (#) opt. val.)

[ This convex set S can be enlarged (strengthened cut)

Bienstock, D., Chen, C. and Munoz, G., 2016. Outer-product-free sets for polynomial optimization and oracle-based cuts. arXzv
preprint arXip:1610.04604. 19
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2 X 2 Cut

Theorem: X > 0 and rank(X) = 1 iff all the 2 X 2 principle minors of X are
zero 3 c

X1 X2 Xiz Xy Xis Xie X[i,j1: submatrix induced by i, j

det(X[i,j]) =0

<
I

If)?[l-,j] > 0forsomei,j(1<i< j<n),define S:={X € S""| X}, = 0}

e S is a convex set J

o Z € int(9) J
« int(S)N(PNQ) =0 f W VX € Q

Bienstock, D., Chen, C. and Munoz, G., 2016. Outer-product-free sets for polynomial optimization and oracle-based cuts. arXzv
preprint arXip:1610.04604. 20

Q:={X eS""X = 0,rank(X) < 1}



Carnegie
Mellon Qiﬁ/’\[g
University

2 X 2 Cut

How to find the intersection points?

w €5 ={X eS™"|X;; = 0}

extreme ray I

Xiij) + Mg = 0
|iXi?‘, +AR;;  Xij + /\Rij] <0

Xj?; + )\Rj?; ij + /\Rjj

" If R ;1 # 0, nointersection point (set A = +0)

= Else, A can be analytically computed

Bienstock, D., Chen, C. and Munoz, G., 2016. Outer-product-free sets for polynomial optimization and oracle-based cuts. arXzv
preprint arXip:1610.04604. 21
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O Implementation: Python 2.7.13 / Gurobi 7.0.1

O Instances:
— 26 Quadratically Constrained Quadratic Programs (QCQP) from GLOBALLib,
n=6~63
— 99 BoxQP (non-convex quadratic objective, bound constraints), n = 12~126
 Compare the root node bound OPT = 100
— McCormick estimator and RLT (Reformulation Linearization Technique) RLT = 80
relaxation GLB =90
 Stopping conditions: . OPT — RLT
— Time limit 600 sec itial Gap = |OPT| + ¢ /100
— No improvement in obj. val. (10 iter) _CL
| P J End Gap OPT — GLB 10/
— No violated cut |OPT| + ¢ 100
— LP becomes numerically unstable 1 GLB — RLT 10
Gap Closed = OPT _RLT /20

Bienstock, D., Chen, C. and Munoz, G., 2016. Outer-product-free sets for polynomial optimization and oracle-based cuts. arXzv
preprint arXip:1610.04604. 22
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Computational Results

OB: Oracle Ball Cuts

OA: Outer Approximation cuts for X > 0

SO: Strengthened OB

2x2: 2 X 2 cuts

@F}g

Cut Family Initial Gap End Gap [Closed Gap | # Cuts Iters Time (s) LPTime (%)
OB 1387.92%  1387.85% 1.00% 16.48 17.20 2.59 2.06%
SO 1387.83% B.77% 18.56 19.52 4.14 2.29%
QA 1001.81% 8.61% 353.40 23.76 33.25 7.51%
2x2 + OA 1003.33% 32.61% 28498 118.08 30.40 15.03%
SO+2x2+0A 1069.59% 31.91% 174.79  107.16 29.55 12.56%
Averages for GLOBALLib instances
g
Cut Family Initial Gap End Gap [Closed Gap | # Cuts Iters Time (s) LPTime (%)
OB 103.59% 103.56% 0.04% 12.84 13.62 127.15 0.40%
SO 103.33% 0.34% 14.34 15.45 132.07 0.49%
OA 30.88% 75.55% 676.90 137.52 459.28 31.80%
2x2 + 32.84% 74.52% 349.21  140.40 473.18 28.76%
SO+2x2+0A 33.43% 74.03% 227.39 13693 475.38 26.59%

Bienstock, D., Chen, C. and Munoz, G., 2016. Outer-product-free sets for polynomial optimization and oracle-based cuts. arXzv

Averages for BoxQP instances

preprint arXiv:1610.04604.

23
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Comments

 The intersection cut is quite generic and computationally
cheap to generate if a set S is given

1 How to find a valid set S for your problem? NO GENERIC
ANSWER

(] Research opportunities
— Find a valid set S in your application
— Strengthen the intersection cut

Balas, E. and Margot, F, 2013. Generalized intersection cuts and a new cut generating paradigm. Mathematical Programming, 137(1-2), pp.19-35. 24
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