An Introduction to Intersection Cuts and Their Applications

Akang Wang
Dept. of Chemical Engineering
Carnegie Mellon University

PSE Seminar

November 30, 2018

Outline

\square Intersection Cuts

- Problem Definition
- Derivation
- Geometric Interpretation
\square Applications
- Mixed Integer Linear Programming
- Reverse Convex Programming
- Polynomial Programming
\square Comments

Problem Definition

\square Optimization problem:

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & c^{T} x \\
\text { subject to } & x \in P \cap Q
\end{array}
$$

$P:=\left\{x \in \mathbb{R}^{n}, A x \leq b, x \geq 0\right\}$ is a polyhedral set, where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{n}$ $Q \subseteq \mathbb{R}^{n}$ represents a non-convex, "complicated" set, such as integrality, reverse convex, etc.

A polyhedral relaxation:

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & c^{T} x \\
\text { subject to } & A x \leq b \\
& x \geq 0
\end{array}
$$

Assume the LP optimality is achieved at \bar{x}
Q: How to generate a valid cut H such that $P \cap Q \subseteq H$ and $\bar{x} \notin H$?

Standard Form of an LP

Introduce slack variables \boldsymbol{s} and let $t:=(x, s)$ represent the variables in LP for convenience

$$
\begin{array}{lll}
\underset{x, s}{\operatorname{minimize}} & c^{T} x & \underset{t}{\operatorname{minimize}}
\end{array} \tilde{c}^{T} t . \begin{cases}\text { subject to } & A x+s=b \longrightarrow \\
& x, s \geq 0\end{cases}
$$

[. Notation

- N index set of structural variables $x,|N|=n$
- I index set of basic variables, $\quad|I|=m$
- J index set of non-basic variables, $\quad|J|=n$

Intersection Cuts

\checkmark A convex set S contains \bar{x} but no any feasible point within its interior

- S is a convex set
- $\bar{x} \in \operatorname{int}(S)$
- $\operatorname{int}(S) \cap(P \cap Q)=\emptyset$

\checkmark Follow the extreme rays at $\overline{\boldsymbol{x}}$ and find the intersection points
\checkmark Obtain the intersection cut that goes through all intersection points

Extreme Rays

\square Find its neighboring extreme point x^{j}, then $r^{j}:=x^{j}-\bar{x}$
\square Move from one extreme point \bar{x} to its neighboring extreme point x^{j} when a non-basic variable enters the basis and a basic variable leaves the basis

- Simple tableau

Extreme Rays

Choose a non-basic variable (structural or slack) t_{j} for some $j \in J$ and let t_{j} enter the basis (assume non-degeneracy)

Other non-basic variables will stay unchanged (still at 0)
\square An extreme ray $r^{j}=x^{j}-\bar{x}$

$$
\begin{array}{llll}
r_{i}^{j}=-\bar{a}_{i j} \xi & \forall i \in I \cap N \\
r_{i}^{j}=0 & \forall i \in J \cap N \backslash\{j\} & \xi>0 & r_{i}^{j}=- \\
r_{j}^{j}=\xi & \text { if } j \in N & & r_{i}^{j}=0 \\
r_{j}^{j}=1
\end{array}
$$

Simplicial Conic Relaxation

\# of extreme rays = \# of non-basic variables = $|J|=\boldsymbol{n}$
\square These extreme rays are linearly independent
\square Define a set $C:=\left\{x \mid x=\overline{\boldsymbol{x}}+\sum_{j \in J} \lambda_{j} \boldsymbol{r}^{j}, \lambda_{j} \geq 0 \forall j \in J\right\}$, then $\boldsymbol{P} \subseteq \boldsymbol{C}$

Intersection Points

The convex set S is intersected by a halfline $\boldsymbol{\eta}^{\boldsymbol{j}}=\overline{\boldsymbol{x}}+\lambda_{j} \boldsymbol{r}^{\boldsymbol{j}}$, where $\lambda_{j} \geq 0$ at some point

$$
\text { subject to } \quad \bar{x}+\lambda_{j} r^{j} \in S
$$

$$
\forall \lambda_{j} \geq 0
$$

This problem (*) can be solved in polynomial time (e.g. line search) and two cases will arise:

- (*) has a unique solution $\bar{\lambda}_{j}>0$ J_{1}
- The obj. is unbounded $\left(r^{j} \in \operatorname{Rec}(S)\right.$, set $\left.\bar{\lambda}_{j}=+\infty\right)$ J_{2}

Intersection Cuts

\square The intersection cut $\beta^{T} x \leq \beta_{0}$ is the halfspace whose boundary contains each intersection point ($j \in J_{1}$) and that is parallel to each extreme ray $\left(j \in J_{2}\right)$ in $\operatorname{Rec}(S)$

$$
\begin{array}{lll}
\beta^{T}\left(\bar{x}+\bar{\lambda}_{j} r^{j}\right) & =\beta_{0} & \forall j \in J_{1} \\
\beta^{T} r^{j} & =0 & \forall j \in J_{2}
\end{array}
$$

A system of linear equalities

- $\left|J_{1}\right|+\left|J_{2}\right|=n$ equations and $n+1$ variables $\left(\beta \in \mathbb{R}^{n}, \beta_{0} \in \mathbb{R}\right)$
- a unique solution (except for a constant factor) since $\left\{r^{j} \mid j \in J\right\}$ are linearly independent
- analytical solution: $\beta_{0}=\sum_{\mathbf{i} \in J} \frac{1}{\lambda_{\mathbf{i}}} \mathbf{b}_{\mathbf{i}}-1 \quad \beta_{\mathbf{j}}=\sum_{\mathbf{i} \in J} \frac{1}{\lambda_{\mathbf{i}}} \mathbf{a}_{\mathbf{i j}} \forall \mathbf{j} \in \mathbf{N}$
- An equivalent but more popular version in the literature

$$
\sum_{j \in J} \frac{1}{\bar{\lambda}_{j}} t_{j} \geq 1
$$

Geometric Interpretation

The larger $S \rightarrow$ the deeper cut
The intersection cut is parallel to an extreme ray in $\operatorname{Rec}(S)$

Degeneracy

The degeneracy will not affect the correctness of the intersection cut formula
The choice of a basis will lead to different (and valid) intersection cuts
In general, no dominance relationship among these cuts is guaranteed

Implementation Details

$\checkmark \bar{\lambda}_{i}$ should be approximated below for numerical validity

- a valid approximation to the intersection cut
\checkmark Scale a cut and perform reduction on small coefficients if necessary for numerical stability
\checkmark For a more generic LP as follows, the derivation for intersection cut has to be updated
- extreme rays r^{j}

$$
\underset{x}{\operatorname{minimize}} \quad c^{T} x
$$

- intersection cut formula

$$
\text { subject to } A x \leq b
$$

$$
\sum_{j \in J^{L}} \frac{t_{j}-t_{j}^{L}}{\bar{\lambda}_{j}}+\sum_{j \in J^{U}} \frac{t_{j}^{U}-t_{j}}{\bar{\lambda}_{j}} \geq 1
$$

J^{L} : index set of non-basic variables at lower bounds
J^{U} : index set of non-basic variables at upper bounds

Mixed Integer Linear Programming

$$
\begin{array}{lll}
\underset{x}{\operatorname{minimize}} & c^{T} x & \\
\text { subject to } & A x=b & \\
& x \geq 0 & \\
& x_{i} \in Z \quad i \in N
\end{array}
$$

The hypersphere can be selected as a valid convex set S

- S is a convex set
- $\bar{x} \in \operatorname{int}(S)$
- $\operatorname{int}(S) \cap(P \cap Q)=\emptyset$

Hard to find the "optimal" set S
$\square \bar{\lambda}_{j}$ can be identified analytically

Reverse Convex Programming

A constraint $g(x) \geq 0$ is called reverse convex if g is convex

$$
\begin{array}{lll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & c^{T} x & \\
\text { subject to } & f_{k}(x) \leq 0 & \forall k=1,2, \ldots, p \\
& g_{l}(x) \geq 0 & \forall l=1,2, \ldots, q
\end{array}
$$

\square
Reverse Convex
where $f_{k}(x)$ and $g_{l}(x)$ are both convex on \mathbb{R}^{n}

- $f_{k}(x) \leq 0$ can be outer-approximated by linear inequalities

- $g_{l}(x) \geq 0$ represent the "complicated" constraints

$$
x_{1}^{2}+x_{2}^{2} \geq 1
$$

Reverse Convex Programming

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & c^{T} x \\
\text { subject to } & A x \leq b \\
& x \geq 0
\end{array}
$$

Define $S=\left\{x \in \mathbb{R}^{n}: g_{\bar{l}}(x) \leq 0\right\}$ for some \bar{l} such that $g_{\bar{l}}(\bar{x})<0$

- S is a convex set
- $\bar{x} \in \operatorname{int}(S)$
- $\operatorname{int}(S) \cap(P \cap Q)=\emptyset$
- $\bar{\lambda}_{j}$ can be identified via solving $g_{\bar{l}}\left(\bar{x}+\lambda_{j} r^{j}\right)=0$ with $\lambda_{j} \geq 0$

Polynomial Programming

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & p_{0}(x) \\
\text { subject to } & p_{i}(x) \leq 0 \quad \forall i=1,2 \ldots, m
\end{array}
$$

where $p_{i}(x)$ is a polynomial function with respect to $x \in \mathbb{R}^{n}$

- e.g. $p_{i}(x)=2+3 x_{1}-3.2 x_{1} x_{2}^{2}+4 x_{2}^{4}, d=4$

Define $m_{r}(x):=\left[1, x_{1}, x_{2} \ldots x_{n}, x_{1}^{2}, x_{1} x_{2}, \ldots, x_{n}^{2}, \ldots, x_{n}^{r}\right]^{T}$, where $r=\left\lceil{ }^{d_{\max } / 2}\right\rceil$

$$
p_{i}(x)=m_{r}^{T}(x) A_{i} m_{r}(x) \leq 0 \Longleftrightarrow\left\langle A_{i}, m_{r}(x) \cdot m_{r}^{T}(x)\right\rangle \leq 0
$$

where A_{i} is an appropriately defined symmetric matrix

Bienstock, D., Chen, C. and Munoz, G., 2016. Outer-product-free sets for polynomial optimization and oracle-based cuts. arXiv preprint arXiv:1610.04604.

Polynomial Programming

$$
\begin{aligned}
& \text { Linear Convex Non-convex } \\
& X=m_{r}(x) \cdot m_{r}^{T}(x) \quad \Longleftrightarrow \quad \text { consistency, } X \succeq 0, \operatorname{rank}(X) \leq 1 \\
& X=\left[\begin{array}{cccccc}
1 & x_{1} & x_{2} & x_{1}^{2} & x_{1} x_{2} & x_{2}^{2} \\
x_{1} & x_{1}^{2} & x_{1} x_{2} & x_{1}^{3} & x_{1}^{2} x_{2} & x_{1} x_{2}^{2} \\
x_{2} & x_{1} x_{2} & x_{2}^{2} & x_{1}^{2} x_{2} & x_{1} x_{2}^{2} & x_{2}^{3} \\
x_{1}^{2} & x_{1}^{3} & x_{1}^{2} x_{2} & x_{1}^{2} x_{2}^{2} & x_{1}^{3} x_{2} & x_{1}^{2} x_{2}^{2} \\
x_{1} x_{2} & x_{1}^{2} x_{2} & x_{1} x_{2}^{2} & x_{1}^{3} x_{2} & x_{1}^{2} x_{2}^{2} & x_{1} x_{2}^{3} \\
x_{2}^{2} & x_{1} x_{2}^{2} & x_{2}^{3} & x_{1}^{2} x_{2}^{2} & x_{1} x_{2}^{3} & x_{2}^{4}
\end{array}\right] \\
& X_{62}=X_{53}=X_{35}=X_{26} \quad Q:=\left\{X \in \mathbb{S}^{n \times n} \mid X \succeq 0, \operatorname{rank}(X) \leq 1\right\} \\
& \text { Polyhedral Relaxation } \\
& \underset{X}{\operatorname{minimize}} \quad\left\langle A_{0}, X\right\rangle \\
& \text { subject to } \quad\left\langle A_{i}, X\right\rangle \leq 0 \quad \forall i=1,2 \ldots, m \\
& X_{11}=1 \\
& X_{i i} \geq 0 \quad \forall i=2 \ldots, n \\
& \text { consistency }
\end{aligned}
$$

Oracle Ball Cut

Define S as a ball $B(\bar{X}, r)$ centering at \bar{X} with a radius r

- S is a convex set
- $\bar{X} \in \operatorname{int}(S)$
- $\operatorname{int}(S) \cap(P \cap Q)=\emptyset$

- Problem (\#) : calculate the shortest distance between \bar{X} and a point from Q
- it can be analytically solved ($\bar{\lambda}_{j}=r=(\#)$ opt. val.)
\square This convex set S can be enlarged (strengthened cut)

2×2 Cut

Theorem: $X \succcurlyeq 0$ and $\operatorname{rank}(X)=1$ ff all the 2×2 principle minors of X are
zero $\quad \bar{x}=\left[\begin{array}{cccccc}\bar{X}_{11} & \bar{X}_{12} & \bar{X}_{13} & \bar{X}_{14} & \bar{X}_{15} & \bar{X}_{16} \\ \bar{X}_{21} & \bar{X}_{22} & \bar{X}_{23} & \bar{X}_{24} & \bar{X}_{25} & \bar{X}_{26} \\ \bar{X}_{31} & \bar{X}_{32} & \bar{X}_{33} & \bar{X}_{34} & \bar{X}_{35} & \bar{X}_{36} \\ \bar{X}_{41} & \bar{X}_{42} & \bar{X}_{43} & \bar{X}_{44} & \bar{X}_{45} & \bar{X}_{46} \\ \bar{X}_{51} & \bar{X}_{52} & \bar{X}_{53} & \bar{X}_{54} & \bar{X}_{55} & \bar{X}_{56} \\ \bar{X}_{61} & \bar{X}_{62} & \bar{X}_{63} & \bar{X}_{64} & \bar{X}_{65} & \bar{X}_{66}\end{array}\right] 5$
$X_{[i, j]}$: submatrix induced by i, j
$\operatorname{det}\left(X_{[i, j]}\right)=0$

If $\bar{X}_{[i, j]}>0$ for some $i, j(1 \leq i<j \leq n)$, define $S:=\left\{X \in \mathbb{S}^{n \times n} \mid X_{[i, j]} \succeq 0\right\}$

- S is a convex set
- $\bar{x} \in \operatorname{int}(S)$
- $\operatorname{int}(S) \cap(P \cap Q)=\emptyset$
$\operatorname{int}(S): X_{[i, j]} \succ 0 \Rightarrow \operatorname{det}\left(X_{[i, j]}\right)>0$

2×2 Cut

How to find the intersection points?

- If $R_{[i, j]} \succcurlyeq 0$, no intersection point (set $\bar{\lambda}=+\infty$)
- Else, $\bar{\lambda}$ can be analytically computed

Computational Results

Implementation: Python 2.7.13 / Gurobi 7.0.1

- Instances:
- 26 Quadratically Constrained Quadratic Programs (QCQP) from GLOBALLib, $n=6 \sim 63$
- 99 BoxQP (non-convex quadratic objective, bound constraints), $n=12 \sim 126$
\square Compare the root node bound

$$
O P T=100
$$

- McCormick estimator and RLT (Reformulation Linearization Technique) $R L T=80$ relaxation
$G L B=90$
- Stopping conditions:
- Time limit 600 sec

$$
\begin{array}{rr}
\text { Initial Gap }=\frac{O P T-R L T}{|O P T|+\epsilon} & 20 / 100 \\
\text { End Gap }=\frac{O P T-G L B}{|O P T|+\epsilon} & 10 / 100 \\
\text { Gap Closed } & =\frac{G L B-R L T}{O P T-R L T}
\end{array} 110 / 20
$$

Computational Results

SO: Strengthened OB
2×2 : 2×2 cuts
OA: Outer Approximation cuts for $X \succcurlyeq 0$

Cut Family	Initial Gap	End Gap	Closed Gap	\# Cuts	Iters	Time (s)	LPTime (\%)
OB	1387.92%	1387.85%	1.00%	16.48	17.20	2.59	2.06%
SO		1387.83%	8.77%	18.56	19.52	4.14	2.29%
OA		1001.81%	8.61%	353.40	83.76	33.25	7.51%
2x2 + OA		1003.33%	32.61%	284.98	118.08	30.40	15.03%
SO+2x2+OA		1069.59%	31.91%	174.79	107.16	29.55	12.56%

Averages for GLOBALLib instances

Cut Family	Initial Gap	End Gap	Closed Gap	\# Cuts	Iters	Time (s)	LPTime (\%)
OB	103.59%	103.56%	0.04%	12.84	13.62	127.15	0.40%
SO		103.33%	0.34%	14.34	15.45	132.07	0.49%
OA		30.88%	75.55%	676.90	137.52	459.28	31.80%
2x2 + OA		32.84%	74.52%	349.21	140.40	473.18	28.76%
SO+2x2+OA		33.43%	74.03%	227.39	136.93	475.38	26.59%
Averages for BoxQP instances							

Bienstock, D., Chen, C. and Munoz, G., 2016. Outer-product-free sets for polynomial optimization and oracle-based cuts. arXiv preprint arXiv:1610.04604.

Comments

\square The intersection cut is quite generic and computationally cheap to generate if a set S is given
\square How to find a valid set S for your problem? NO GENERIC ANSWER
\square Research opportunities

- Find a valid set S in your application
- Strengthen the intersection cut

University

THANK YOU!

