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Problem Definition
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 Optimization problem:

𝑃𝑃 ≔ {𝑥𝑥 ∈ ℝ𝑛𝑛,𝐴𝐴𝑥𝑥 ≤ 𝑏𝑏, 𝑥𝑥 ≥ 0} is a polyhedral set, where 𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛, 𝑏𝑏 ∈ ℝ𝑛𝑛

𝑄𝑄 ⊆ ℝ𝑛𝑛 represents a non-convex, “complicated” set, such as integrality, 
reverse convex, etc.

 A polyhedral relaxation:

Assume the LP optimality is achieved at �̅�𝑥
Q: How to generate a valid cut 𝑯𝑯 such that 𝑃𝑃 ∩ 𝑄𝑄 ⊆ 𝑯𝑯 and �̅�𝑥 ∉ 𝑯𝑯 ?

�𝒙𝒙

𝑃𝑃 𝑃𝑃 ∩ 𝑄𝑄𝑯𝑯



Standard Form of an LP
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 Introduce slack variables 𝒔𝒔 and let 𝑡𝑡 ≔ (𝑥𝑥, 𝑠𝑠) represent the variables in LP 
for convenience

 Notation
• 𝑁𝑁 index set of structural variables 𝒙𝒙, 𝑁𝑁 = 𝑛𝑛
• 𝐼𝐼 index set of basic variables,              𝐼𝐼 = 𝑚𝑚
• 𝐽𝐽 index set of non-basic variables,     𝐽𝐽 = 𝑛𝑛



Intersection Cuts
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 A convex set 𝑆𝑆 contains �𝒙𝒙 but no any feasible point within its interior

 Follow the extreme rays at �𝒙𝒙 and find the intersection points

 Obtain the intersection cut that goes through all intersection points

Balas, E., 1971. Intersection cuts—a new type of  cutting planes for integer programming. Operations Research, 19(1), pp.19-39.

𝑆𝑆
�̅�𝑥

𝑃𝑃 𝑃𝑃 ∩ 𝑄𝑄



Extreme Rays
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 Find its neighboring extreme point 𝒙𝒙𝒋𝒋, then 𝒓𝒓𝒋𝒋 ≔ 𝒙𝒙𝒋𝒋 − �𝒙𝒙

 Move from one extreme point �𝒙𝒙 to its neighboring 
extreme point 𝒙𝒙𝒋𝒋 when a non-basic variable enters the 
basis and a basic variable leaves the basis

 Simple tableau

�𝒙𝒙

𝒙𝒙𝒋𝒋

𝒓𝒓𝒋𝒋

Basic

Non-basic

Focus on structural variables 𝒙𝒙 rows 

�𝒙𝒙

Basic Non-basic



Extreme Rays
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 Choose a non-basic variable (structural or slack) 𝑡𝑡𝑗𝑗 for some 𝑗𝑗 ∈ 𝐽𝐽 and let 
𝑡𝑡𝑗𝑗 enter the basis (assume non-degeneracy)

 An extreme ray 𝒓𝒓𝒋𝒋 = 𝑥𝑥𝑗𝑗 − �̅�𝑥

�𝒙𝒙 𝒙𝒙𝒋𝒋

pivot

No need to track 
slack variables 𝑠𝑠
rows

Other non-basic variables will 
stay unchanged (still at 0)



Simplicial Conic Relaxation
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 # of extreme rays = # of non-basic variables = |𝐽𝐽| = 𝒏𝒏

 These extreme rays are linearly independent

 Define a set 𝐶𝐶 ≔ {𝑥𝑥|𝑥𝑥 = �𝒙𝒙 + ∑𝑗𝑗∈𝐽𝐽 𝜆𝜆𝑗𝑗𝒓𝒓𝒋𝒋 , 𝜆𝜆𝑗𝑗 ≥ 0 ∀𝑗𝑗 ∈ 𝐽𝐽}, then 𝑷𝑷 ⊆ 𝑪𝑪

𝑆𝑆
�𝒙𝒙

𝑃𝑃

𝐶𝐶

𝒓𝒓𝒋𝒋



Intersection Points
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 The convex set 𝑆𝑆 is intersected by a halfline 𝜼𝜼𝒋𝒋 = �𝒙𝒙 + 𝜆𝜆𝑗𝑗𝒓𝒓𝒋𝒋, where 𝜆𝜆𝑗𝑗 ≥ 0
at some point

 This problem (∗) can be solved in polynomial time (e.g. line search) and 
two cases will arise:
‒ (∗) has a unique solution �̅�𝜆𝑗𝑗 > 0
‒ The obj. is unbounded (𝑟𝑟𝑗𝑗 ∈ Rec(𝑆𝑆), set �̅�𝜆𝑗𝑗 = +∞)

𝑆𝑆
�𝒙𝒙

𝑟𝑟𝑗𝑗𝑆𝑆

𝑃𝑃 𝑃𝑃 ∩ 𝑄𝑄

𝐽𝐽1
𝐽𝐽2



Intersection Cuts
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 The intersection cut 𝜷𝜷𝑻𝑻𝒙𝒙 ≤ 𝜷𝜷𝟎𝟎 is the halfspace whose boundary contains 
each intersection point (𝑗𝑗 ∈ 𝐽𝐽1) and that is parallel to each extreme ray
(𝑗𝑗 ∈ 𝐽𝐽2) in Rec(𝑆𝑆)

 A system of linear equalities 
‒ 𝐽𝐽1 + |𝐽𝐽2| = 𝑛𝑛 equations and 𝑛𝑛 + 1 variables (𝛽𝛽 ∈ ℝ𝑛𝑛,𝛽𝛽0 ∈ ℝ) 
‒ a unique solution (except for a constant factor) since {𝑟𝑟𝑗𝑗|𝑗𝑗 ∈ 𝐽𝐽} are 

linearly independent
‒ analytical solution: 

 An equivalent but more popular version in the literature

Balas, E., 1971. Intersection cuts—a new type of  cutting planes for integer programming. Operations Research, 19(1), pp.19-39.



Geometric Interpretation
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�̅�𝑥

𝑃𝑃 𝑃𝑃 ∩ 𝑄𝑄

�𝒙𝒙

𝑃𝑃 𝑃𝑃 ∩ 𝑄𝑄

The larger 𝑆𝑆  the deeper cut The intersection cut is 
parallel to an extreme ray 
in Rec(𝑆𝑆)

𝑆𝑆
𝑆𝑆



Degeneracy
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 The degeneracy will not affect the correctness of the intersection cut 
formula

 The choice of a basis will lead to different (and valid) intersection cuts
 In general, no dominance relationship among these cuts is guaranteed

�̅�𝑥

𝑃𝑃 𝑃𝑃 ∩ 𝑄𝑄

�̅�𝑥

𝑃𝑃 𝑃𝑃 ∩ 𝑄𝑄

𝑆𝑆𝑆𝑆



Implementation Details
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 �̅�𝜆𝑖𝑖 should be approximated below for numerical validity
– a valid approximation to the intersection cut

 Scale a cut and perform reduction on small coefficients if necessary for 
numerical stability

 For a more generic LP as follows, the derivation for intersection cut has to 
be updated
– extreme rays 𝑟𝑟𝑗𝑗

– intersection cut formula

𝐽𝐽𝐿𝐿: index set of non-basic variables at lower bounds
𝐽𝐽𝑈𝑈 : index set of non-basic variables at upper bounds



Mixed Integer Linear Programming
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 The hypersphere can be selected as a valid convex set S

 Hard to find the “optimal” set 𝑆𝑆
 �̅�𝜆𝑗𝑗 can be identified analytically

�𝒙𝒙



Reverse Convex Programming

15Hillestad, R.J. and Jacobsen, S.E., 1980. Reverse convex programming. Applied Mathematics and Optimization, 6(1), pp.63-78.

A constraint 𝑔𝑔 𝑥𝑥 ≥ 0 is called reverse convex if 𝑔𝑔 is convex

where 𝑓𝑓𝑘𝑘(𝑥𝑥) and 𝑔𝑔𝑙𝑙(𝑥𝑥) are both convex on ℝ𝑛𝑛

 𝑓𝑓𝑘𝑘(𝑥𝑥) ≤ 0 can be outer-approximated by linear inequalities

 𝑔𝑔𝑙𝑙(𝑥𝑥) ≥ 0 represent the “complicated” constraints

Convex 
Reverse Convex 

𝑥𝑥12 + 𝑥𝑥22 ≥ 1



Reverse Convex Programming

16Hillestad, R.J. and Jacobsen, S.E., 1980. Reverse convex programming. Applied Mathematics and Optimization, 6(1), pp.63-78.

 Define 𝑆𝑆 = {𝑥𝑥 ∈ ℝ𝑛𝑛:𝑔𝑔 ̅𝑙𝑙 𝑥𝑥 ≤ 0} for some ̅𝑙𝑙 such that 𝑔𝑔 ̅𝑙𝑙 �̅�𝑥 < 0

 �̅�𝜆𝑗𝑗 can be identified via solving 𝑔𝑔 ̅𝑙𝑙 �̅�𝑥 + 𝜆𝜆𝑗𝑗𝑟𝑟𝑗𝑗 = 0 with 𝜆𝜆𝑗𝑗 ≥ 0

𝑥𝑥12 + 𝑥𝑥22 ≤ 1



Polynomial Programming
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where 𝑝𝑝𝑖𝑖 𝑥𝑥 is a polynomial function with respect to 𝑥𝑥 ∈ ℝ𝑛𝑛

‒ e.g. 𝑝𝑝𝑖𝑖 𝑥𝑥 = 2 + 3𝑥𝑥1 − 3.2𝑥𝑥1𝑥𝑥22 + 4𝑥𝑥24,𝑑𝑑 = 4

Define 𝑚𝑚𝑟𝑟 𝑥𝑥 ≔ 1, 𝑥𝑥1, 𝑥𝑥2 … 𝑥𝑥𝑛𝑛, 𝑥𝑥12, 𝑥𝑥1𝑥𝑥2, … , 𝑥𝑥𝑛𝑛2, … , 𝑥𝑥𝑛𝑛𝑟𝑟 𝑇𝑇, where 𝑟𝑟 = �𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
2

where 𝐴𝐴𝑖𝑖 is an appropriately defined symmetric matrix
Moment-based Reformulation (lifted space)

Bienstock, D., Chen, C. and Munoz, G., 2016. Outer-product-free sets for polynomial optimization and oracle-based cuts. arXiv
preprint arXiv:1610.04604.

𝑚𝑚𝑟𝑟
𝑇𝑇(𝑥𝑥) 𝑚𝑚𝑟𝑟(𝑥𝑥)𝐴𝐴𝑖𝑖



Polynomial Programming
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Polyhedral Relaxation

Bienstock, D., Chen, C. and Munoz, G., 2016. Outer-product-free sets for polynomial optimization and oracle-based cuts. arXiv
preprint arXiv:1610.04604.

Diagonal entries 𝑋𝑋𝑖𝑖𝑖𝑖 ≥ 0

ConvexLinear

𝑋𝑋62 = 𝑋𝑋53 = 𝑋𝑋35 = 𝑋𝑋26

Non-convex



Oracle Ball Cut
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 Define 𝑆𝑆 as a ball 𝐵𝐵( �𝑋𝑋, 𝑟𝑟) centering at �𝑋𝑋 with a radius 𝑟𝑟

 Problem (#) : calculate the shortest distance between �𝑋𝑋 and a point from 
𝑄𝑄
– it can be analytically solved (�𝝀𝝀𝒋𝒋 = 𝒓𝒓 = (#) opt. val.) 

 This convex set S can be enlarged (strengthened cut)

Bienstock, D., Chen, C. and Munoz, G., 2016. Outer-product-free sets for polynomial optimization and oracle-based cuts. arXiv
preprint arXiv:1610.04604.

�𝑋𝑋

𝑃𝑃 𝑃𝑃 ∩ 𝑄𝑄

𝑟𝑟

𝑄𝑄



𝟐𝟐 × 𝟐𝟐 Cut
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Theorem: 𝑋𝑋 ≽ 0 and 𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 𝑋𝑋 = 1 iff all the 2 × 2 principle minors of 𝑋𝑋 are 
zero

If �𝑋𝑋[𝑖𝑖,𝑗𝑗] ≻ 0 for some 𝑖𝑖, 𝑗𝑗 (1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛), define 

Bienstock, D., Chen, C. and Munoz, G., 2016. Outer-product-free sets for polynomial optimization and oracle-based cuts. arXiv
preprint arXiv:1610.04604.

3 5

3

5

𝑋𝑋[𝑖𝑖,𝑗𝑗]: submatrix induced by 𝑖𝑖, 𝑗𝑗

𝑑𝑑𝑑𝑑𝑡𝑡 𝑋𝑋 𝑖𝑖,𝑗𝑗 = 0



𝟐𝟐 × 𝟐𝟐 Cut
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How to find the intersection points?

 If 𝑅𝑅[𝑖𝑖,𝑗𝑗] ≽ 0, no intersection point (set �̅�𝜆 = +∞)
 Else, �̅�𝜆 can be analytically computed

Bienstock, D., Chen, C. and Munoz, G., 2016. Outer-product-free sets for polynomial optimization and oracle-based cuts. arXiv
preprint arXiv:1610.04604.

extreme ray



Computational Results
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 Implementation: Python 2.7.13 / Gurobi 7.0.1 
 Instances:

‒ 26 Quadratically Constrained Quadratic Programs (QCQP) from GLOBALLib, 
𝑛𝑛 = 6~63

‒ 99 BoxQP (non-convex quadratic objective, bound constraints), 𝑛𝑛 = 12~126
 Compare the root node bound

– McCormick estimator and RLT (Reformulation Linearization Technique) 
relaxation

 Stopping conditions: 
– Time limit 600 sec                 
– No improvement in obj. val. (10 iter)
– No violated cut     
– LP becomes numerically unstable

Bienstock, D., Chen, C. and Munoz, G., 2016. Outer-product-free sets for polynomial optimization and oracle-based cuts. arXiv
preprint arXiv:1610.04604.

𝑂𝑂𝑃𝑃𝑂𝑂 = 100
𝑅𝑅𝑅𝑅𝑂𝑂 = 80
𝐺𝐺𝑅𝑅𝐵𝐵 = 90

�20
100

�10
100

�10
20



Computational Results
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OB: Oracle Ball Cuts                                             SO: Strengthened OB
OA: Outer Approximation cuts for 𝑋𝑋 ≽ 0 2x2: 2 × 2 cuts

Bienstock, D., Chen, C. and Munoz, G., 2016. Outer-product-free sets for polynomial optimization and oracle-based cuts. arXiv
preprint arXiv:1610.04604.

Averages for GLOBALLib instances

Averages for BoxQP instances 



𝑆𝑆𝑆𝑆𝑆𝑆

Comments
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 The intersection cut is quite generic and computationally 
cheap to generate if a set 𝑆𝑆 is given

 How to find a valid set 𝑆𝑆 for your problem? NO GENERIC
ANSWER

 Research opportunities
‒ Find a valid set 𝑆𝑆 in your application
‒ Strengthen the intersection cut

Balas, E. and Margot, F., 2013. Generalized intersection cuts and a new cut generating paradigm. Mathematical Programming, 137(1-2), pp.19-35.
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