

An Introduction to Intersection Cuts and Their Applications

Akang Wang

Dept. of Chemical Engineering Carnegie Mellon University

> PSE Seminar November 30, 2018

□ Intersection Cuts

- Problem Definition
- Derivation
- Geometric Interpretation

Applications

- Mixed Integer Linear Programming
- Reverse Convex Programming
- Polynomial Programming

Problem Definition

Optimization problem:

 $\begin{array}{ll} \underset{x}{\text{minimize}} & c^T x\\ \text{subject to} & x \in P \cap Q \end{array}$

 $P \coloneqq \{x \in \mathbb{R}^n, Ax \le b, x \ge 0\}$ is a polyhedral set, where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^n$ $Q \subseteq \mathbb{R}^n$ represents a non-convex, "complicated" set, such as integrality, reverse convex, etc.

A polyhedral relaxation: minimize

subject to $Ax \leq b$

 $c^T x$

x > 0

Assume the LP optimality is achieved at \bar{x}

Q: How to generate a valid cut **H** such that $P \cap Q \subseteq H$ and $\bar{x} \notin H$?

Standard Form of an LP

□ Introduce slack variables s and let $t \coloneqq (x, s)$ represent the variables in LP for convenience

 $\begin{array}{lll} \underset{x,s}{\operatorname{minimize}} & c^T x & \underset{t}{\operatorname{minimize}} & \tilde{c}^T t \\ \text{subject to} & Ax + s = b & & \\ & x,s \geq 0 & & t \geq 0 \end{array}$

- **D** Notation
 - N index set of structural variables x, |N| = n
 - I index set of **basic** variables, |I| = m
 - J index set of **non-basic** variables, |J| = n

Intersection Cuts

- \checkmark A convex set *S* contains \overline{x} but no any feasible point within its interior
 - S is a convex set
 - $\bar{x} \in int(S)$
 - $int(S) \cap (P \cap Q) = \emptyset$

✓ Follow the extreme rays at \overline{x} and find the intersection points

✓ Obtain the **intersection cut** that goes through all intersection points

Extreme Rays

 \Box Find its neighboring extreme point x^j , then $r^j \coloneqq x^j - \overline{x}$

☐ Move from one extreme point \overline{x} to its neighboring extreme point x^j when a **non-basic** variable **enters** the basis and a **basic** variable **leaves** the basis

Simple tableau

Extreme Rays

Choose a non-basic variable (structural or slack) t_j for some $j \in J$ and let t_j enter the basis (assume non-degeneracy) $x_i = \bar{x}_i - \sum_{j \in J} \bar{a}_{ij} t_j \quad \forall i \in I \cap N$ $x_i = 0$ $x_i = \bar{x}_i - \bar{a}_{ij} \xi$ $x_i = 0$ $x_j = \xi$ x_j $y_i \in I \cap N$ $\forall i \in I \cap N \setminus \{j\}$ if $j \in N$ No need to track slack variables srows

 \Box An extreme ray $r^j = x^j - \bar{x}$

$$\begin{aligned} r_i^j &= -\bar{a}_{ij}\xi & \forall i \in I \cap N \\ r_i^j &= 0 & \forall i \in J \cap N \setminus \{j\} & \xrightarrow{\xi > 0} & r_i^j = -\bar{a}_{ij} \\ r_j^j &= \xi & \text{if } j \in N & r_i^j = 1 \end{aligned}$$

Simplicial Conic Relaxation

 \square # of extreme rays = # of non-basic variables = |J| = n

- □ These extreme rays are **linearly independent**
- **D** Define a set $C \coloneqq \{x | x = \overline{x} + \sum_{j \in J} \lambda_j r^j$, $\lambda_j \ge 0 \forall j \in J\}$, then $P \subseteq C$

Intersection Points

□ The convex set *S* is intersected by a halfline $\eta^{j} = \overline{x} + \lambda_{j}r^{j}$, where $\lambda_{j} \ge 0$ at some point $P \cap Q$ $\max_{\lambda_{j} \ge 0}$ λ_{j} (*) subject to $\overline{x} + \lambda_{j}r^{j} \in S$ $\overline{x} + \lambda_{j}r^{j} \in S$ $\forall \lambda_{j} \ge 0$

- This problem (*) can be solved in polynomial time (e.g. line search) and two cases will arise:
 - (*) has a unique solution $\bar{\lambda}_j > 0$
 - The obj. is **unbounded** ($r^j \in \text{Rec}(S)$, set $\overline{\lambda}_j = +\infty$) J_2

 J_1

Intersection Cuts

□ The intersection cut $\beta^T x \leq \beta_0$ is the halfspace whose boundary contains each intersection point ($j \in J_1$) and that is parallel to each extreme ray ($j \in J_2$) in Rec(S)

$$\beta^{T}(\bar{x} + \bar{\lambda}_{j}r^{j}) = \beta_{0} \quad \forall j \in J_{1}$$
$$\beta^{T}r^{j} = 0 \quad \forall j \in J_{2}$$

- □ A system of linear equalities
 - $|J_1| + |J_2| = n$ equations and n + 1 variables ($\beta \in \mathbb{R}^n, \beta_0 \in \mathbb{R}$)
 - − a **unique solution** (except for a constant factor) since $\{r^j | j \in J\}$ are linearly independent
 - analytical solution: $\beta_0 = \sum_{i \in J} \frac{1}{\lambda_i} \mathbf{b}_i 1$ $\beta_j = \sum_{i \in J} \frac{1}{\lambda_i} \mathbf{a}_{ij} \quad \forall j \in \mathbf{N}$
- An equivalent but more popular version in the literature

$$\sum_{j\in J} \frac{1}{\bar{\lambda}_j} t_j \ge 1$$

Geometric Interpretation

The larger $S \rightarrow$ the deeper cut

The intersection cut is parallel to an extreme ray in Rec(S)

Degeneracy

The degeneracy will not affect the correctness of the intersection cut formula

The choice of a basis will lead to different (and valid) intersection cuts

In general, no dominance relationship among these cuts is guaranteed

Implementation Details

- $\checkmark \bar{\lambda}_i$ should be approximated below for **numerical validity**
 - a valid approximation to the intersection cut
- Scale a cut and perform reduction on small coefficients if necessary for numerical stability
- ✓ For a more generic LP as follows, the derivation for intersection cut has to be updated
 - extreme rays r^j
 - intersection cut formula

$$\begin{array}{ll} \underset{x}{\text{minimize}} & c^{T} x\\ \text{subject to} & Ax \leq b\\ & x^{L} \leq x \leq x^{U} \end{array}$$

T

$$\sum_{j \in J^L} \frac{t_j - t_j^L}{\bar{\lambda}_j} + \sum_{j \in J^U} \frac{t_j^U - t_j}{\bar{\lambda}_j} \ge 1$$

 $j \in J^L$ $j \in J^U$ J^J J^L : index set of non-basic variables at lower bounds J^U : index set of non-basic variables at upper bounds

Mixed Integer Linear Programming

□ The hypersphere can be selected as a valid convex set S

- S is a convex set
- $\bar{x} \in int(S)$

Carnegie

- $int(S) \cap (P \cap Q) = \emptyset$
- □ Hard to find the "optimal" set *S*
- $\Box \ \overline{\lambda}_j$ can be identified analytically

Reverse Convex Programming

A constraint $g(x) \ge 0$ is called **reverse convex** if g is convex

$$\begin{array}{ll} \underset{x \in \mathbb{R}^{n}}{\text{minimize}} & c^{T}x\\ \text{subject to} & f_{k}(x) \leq 0 & \forall k = 1, 2, ..., p & \text{Convex}\\ & g_{l}(x) \geq 0 & \forall l = 1, 2, ..., q & \text{Reverse Convex} \end{array}$$

where $f_k(x)$ and $g_l(x)$ are both convex on \mathbb{R}^n

- $f_k(x) \le 0$ can be outer-approximated by linear inequalities
- $g_l(x) \ge 0$ represent the "complicated" constraints

Hillestad, R.J. and Jacobsen, S.E., 1980. Reverse convex programming. Applied Mathematics and Optimization, 6(1), pp.63-78.

 $\Box \ \overline{\lambda}_j \text{ can be identified via solving } g_{\overline{l}}(\overline{x} + \lambda_j r^j) = 0 \text{ with } \lambda_j \ge 0$

Polynomial Programming

 $\begin{array}{ll} \underset{x}{\text{minimize}} & p_0(x) \\ \text{subject to} & p_i(x) \leq 0 \qquad \forall i = 1, 2..., m \end{array}$

where $p_i(x)$ is a **polynomial** function with respect to $x \in \mathbb{R}^n$

- e.g. $p_i(x) = 2 + 3x_1 - 3.2x_1x_2^2 + 4x_2^4$, d = 4

Define
$$m_r(x) \coloneqq [1, x_1, x_2 \dots x_n, x_1^2, x_1 x_2, \dots, x_n^2, \dots, x_n^r]^T$$
, where $r = \begin{bmatrix} d_{max}/2 \end{bmatrix}$
 $p_i(x) = m_r^T(x) A_i m_r(x) \le 0 \iff \langle A_i, m_r(x) \cdot m_r^T(x) \rangle \le 0$

where
$$A_i$$
 is an appropriately defined symmetric matrix

$$Moment-based Reformulation (lifted $x_{13}^{2} x_{14}^{1.5} x_{16}^{1.6} x_{16}^{1.5} x_{1}^{1.5} x_{1}^{2} x_{2}^{1.5} x_{1}^{1.5} x_{2}^{1.5} x_{1}^{1.5} x_{2}^{1.5} x_{1}^{1.5} x_{2}^{1.5} x_{1}^{1.5} x_{1}^$$$

Polynomial Programming

$$X = m_{r}(x) \cdot m_{r}^{T}(x) \iff \text{ consistency, } X \succeq 0, rank(X) \le 1$$

$$X = \begin{bmatrix} 1 & x_{1} & x_{2} & x_{1}^{2} & x_{1}x_{2} & x_{2}^{2} \\ x_{1} & x_{1}^{2} & x_{1}x_{2} & x_{1}^{2} & x_{1}x_{2} & x_{2}^{2} \\ x_{2} & x_{1}x_{2} & x_{2}^{2} & x_{1}^{2}x_{2} & x_{1}x_{2}^{2} & x_{2}^{3} \\ x_{1}^{2} & x_{1}^{3} & x_{1}^{2}x_{2} & x_{1}^{2}x_{2}^{2} & x_{1}^{3}x_{2} & x_{1}^{2}x_{2}^{2} \\ x_{1}x_{2} & x_{1}^{2}x_{2} & x_{1}x_{2}^{2} & x_{1}^{3}x_{2} & x_{1}^{2}x_{2}^{2} & x_{1}x_{2}^{3} \\ x_{2}^{2} & x_{1}x_{2}^{2} & x_{2}^{3} & x_{1}^{2}x_{2}^{2} & x_{1}x_{2}^{3} & x_{2}^{4} \end{bmatrix}$$
Diagonal entries $X_{ii} \ge 0$

$$X = \begin{bmatrix} X_{62} = X_{53} = X_{35} = X_{26} \\ X_{62} = X_{53} = X_{35} = X_{26} \end{bmatrix} Q := \{X \in \mathbb{S}^{n \times n} | X \succeq 0, rank(X) \le 1\}$$
Polyhedral Relaxation
$$\min_{X} \quad \langle A_{0}, X \rangle$$
subject to $\langle A_{i}, X \rangle \le 0 \quad \forall i = 1, 2..., m$

$$X_{11} = 1$$

$$X_{ii} \ge 0 \qquad \forall i = 2..., n$$

$$(consistency)$$

Oracle Ball Cut

 \Box Define S as a ball $B(\overline{X}, r)$ centering at \overline{X} with a radius r

□ Problem (#) : calculate the shortest distance between \overline{X} and a point from Q

- it can be **analytically solved** ($\overline{\lambda}_i = r = (\#)$ opt. val.)

This convex set S can be enlarged (strengthened cut)

2×2 Cut

Theorem: $X \ge 0$ and rank(X) = 1 iff all the 2 \times 2 principle minors of X are

$$\bar{X} = \begin{bmatrix} \bar{X}_{11} & \bar{X}_{12} & \bar{X}_{13} & \bar{X}_{14} & \bar{X}_{15} & \bar{X}_{16} \\ \bar{X}_{21} & \bar{X}_{22} & \bar{X}_{23} & \bar{X}_{24} & \bar{X}_{25} & \bar{X}_{26} \\ \bar{X}_{31} & \bar{X}_{32} & \bar{X}_{33} & \bar{X}_{34} & \bar{X}_{35} & \bar{X}_{36} \\ \bar{X}_{41} & \bar{X}_{42} & \bar{X}_{43} & \bar{X}_{44} & \bar{X}_{45} & \bar{X}_{46} \\ \bar{X}_{51} & \bar{X}_{52} & \bar{X}_{53} & \bar{X}_{54} & \bar{X}_{55} & \bar{X}_{56} \\ \bar{X}_{61} & \bar{X}_{62} & \bar{X}_{63} & \bar{X}_{64} & \bar{X}_{65} & \bar{X}_{66} \end{bmatrix}$$

If $\overline{X}_{[i,j]} > 0$ for some i, j ($1 \le i < j \le n$), define $S := \{X \in \mathbb{S}^{n \times n} | X_{[i,j]} \succeq 0\}$

• S is a convex set • $\bar{x} \in int(S)$ • $int(S) \cap (P \cap Q) = \emptyset$ $int(S) : X_{[i,j]} \succ 0 \Rightarrow det(X_{[i,j]}) > 0$ $Q := \{X \in \mathbb{S}^{n \times n} | X \succeq 0, rank(X) \leq 1\}$ $det(X_{[i,j]}) = 0$ $\forall X \in Q$

2×2 Cut

How to find the **intersection points**?

$$\bar{X} + \lambda R \in S = \{X \in \mathbb{S}^{n \times n} | X_{[i,j]} \succeq 0\}$$

extreme ray
$$\bar{X}_{[i,j]} + \lambda R_{[i,j]} \succeq 0$$
$$\downarrow$$
$$\begin{bmatrix} \bar{X}_{ii} + \lambda R_{ii} & \bar{X}_{ij} + \lambda R_{ij} \\ \bar{X}_{ji} + \lambda R_{ji} & \bar{X}_{jj} + \lambda R_{jj} \end{bmatrix} \succeq 0$$

- If $R_{[i,j]} \ge 0$, no intersection point (set $\overline{\lambda} = +\infty$)
- Else, $\overline{\lambda}$ can be analytically computed

OPT = 100

Computational Results

- □ Implementation: Python 2.7.13 / Gurobi 7.0.1
- □ Instances:
 - 26 Quadratically Constrained Quadratic Programs (QCQP) from GLOBALLib, $n = 6 \sim 63$
 - 99 **BoxQP** (non-convex quadratic objective, bound constraints), $n = 12 \sim 126$
- Compare the root node bound
 - McCormick estimator and RLT (Reformulation Linearization Technique) RLT = 80relaxation GLB = 90
- □ Stopping conditions:
 - Time limit 600 sec
 - No improvement in obj. val. (10 iter)
 - No violated cut
 - LP becomes numerically unstable

Initial Gap =
$$\frac{OPT - RLT}{|OPT| + \epsilon}$$
 20/100

End Gap =
$$\frac{OPT - GLB}{|OPT| + \epsilon}$$
 10/100

$$Gap Closed = \frac{GLB - RLT}{OPT - RLT} \qquad \frac{10}{20}$$

Computational Results

OB: Oracle Ball Cuts

SO: Strengthened OB

OA: Outer Approximation cuts for $X \ge 0$

 $2x2: 2 \times 2$ cuts

Cut Family	Initial Gap	End Gap	Closed Gap	# Cuts	Iters	Time (s)	LPTime (%)
OB	1387.92%	1387.85%	1.00%	16.48	17.20	2.59	2.06%
SO		1387.83%	8.77%	18.56	19.52	4.14	2.29%
OA		1001.81%	8.61%	353.40	83.76	33.25	7.51%
2x2 + OA		1003.33%	32.61%	284.98	118.08	30.40	15.03%
SO+2x2+OA		1069.59%	31.91%	174.79	107.16	29.55	12.56%

Averages for GLOBALLib instances

Cut Family	Initial Gap	End Gap	Closed Gap	# Cuts	Iters	Time (s)	LPTime (%)
OB	103.59%	103.56%	0.04%	12.84	13.62	127.15	0.40%
SO		103.33%	0.34%	14.34	15.45	132.07	0.49%
OA		30.88%	75.55%	676.90	137.52	459.28	31.80%
2x2 + OA		32.84%	74.52%	349.21	140.40	473.18	28.76%
SO+2x2+OA		33.43%	74.03%	227.39	136.93	475.38	26.59%

Averages for BoxQP instances

Comments

- □ The intersection cut is quite **generic** and **computationally cheap** to generate if a set *S* is given
- □ How to find a valid set *S* for your problem? **NO GENERIC** ANSWER
- Research opportunities
 - Find a valid set S in your application
 - Strengthen the intersection cut

THANK YOU!